whatis 发表于 2011-4-22 23:39

请教随机序列的长度问题

本帖最后由 whatis 于 2011-4-22 23:48 编辑

请教随机序列的长度问题

由 0,1 二个数字产生随机序列 {an}。 当序列长度 n 足够长时(尤其无限长),  0,1 的数目应该 各占 1/2。那么有没有一个最低的长度数量级 ,当序列长度超过该长度数量级时,0,1 的数目比较稳定,接近各占 1/2,而不再有大的起落。

比如:
(1)当序列长度为 10 ,也就是含有 10 个数字。随机序列中 0,1 的数目会起落很大。即使全部为 0,或者全部为 1 也是可能的。

(2)当序列长度为 1000000 (百万) ,也就是有  1000000 (百万)个数字。此时产生的随机序列中的0,1数目应该比较稳定,接近 各占 1/2。(全部为 0,或者全部为 1 几乎不可能)

那么有没有一个最低的长度数量级 ,当序列长度超过该长度数量级时,0,1 的数目就趋向比较稳定,接近 各占 1/2,而不再有大的起落。



aqua2001 发表于 2011-4-23 09:00

你需要先定义什么叫“不再有大的起落”?要是绝对没有大的起落,那是不可能的。即使是100000个数字,也完全可能都是0或者都是1,只是这种事情出现的概率比较小罢了。所以你要先说明白所谓“接近、趋向1/2”究竟是什么意思。比方说我可以认为:如果一个随机变量位于的概率超过0.9,它就可以称为“比较接近1/2”了。然后我们可以去计算随着长度的增加,位于这个区间的概率是如何变化的。计算时可以用正态分布来近似二项分布,以简化计算。
页: [1]
查看完整版本: 请教随机序列的长度问题