数学专业英语-(a) How to define a mathematical term?
<b>数学专业英语-(a) How to define a mathematical term?</b>
<P><FONT face="Times New Roman">
<P><b></b></P></FONT>
<P><b></b></P>
<P><FONT face="Times New Roman"> </FONT>数学术语的定义和数学定理的叙述,其基本格式可归纳为似“<FONT face="Times New Roman">if…then…</FONT>”的格式,其他的格式一般地说可视为这一格式的延伸或变形。
<p>
<P><FONT face="Times New Roman"> </FONT>如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“<FONT face="Times New Roman">If……then……</FONT>”的句型,而实际上是用“定语部分”代替了“<FONT face="Times New Roman">If</FONT>”句,因此我们可以把“定语部分”写成<FONT face="Times New Roman">If</FONT>句,从而又回到“<FONT face="Times New Roman">If……then……</FONT>”的句型。
<p>
<p>
<P><FONT face="Times New Roman"> </FONT>至于下面将要叙述的“<FONT face="Times New Roman">Let…if…then</FONT>”,“<FONT face="Times New Roman">Let and assume…, If…then…</FONT>”等句型,其实质也是基本句型“<FONT face="Times New Roman">If……then……</FONT>”的延伸。
<p>
<p>
<P><FONT face="Times New Roman"> </FONT>有时,在定义或定理中,需要附加说明某些成份,我们还可在“<FONT face="Times New Roman">if…then…</FONT>”句中插入如“<FONT face="Times New Roman">where…</FONT>”等的句子,加以延伸(见后面例子)。
<p>
<p>
<P><FONT face="Times New Roman"> </FONT>总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。
<p>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<H2 align=center><A>(<FONT face="Times New Roman">a</FONT></A>)<FONT face="Times New Roman">How to define a mathematical term?</FONT></H2>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<TABLE cellSpacing=0 cellPadding=0 align=left border=1>
<TR>
<TD vAlign=top width=96>
<P><FONT face="Times New Roman">is defined as
<p></FONT>
<p>
<P><FONT face="Times New Roman">is called
<p></FONT>
<p></TD></TR></TABLE>
<P><FONT face="Times New Roman">1. Something something
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman"> The union of A and B <U>is defined as</U> the set of those elements which are in A, in B or in both.
<p></FONT>
<p>
<P><FONT face="Times New Roman"> The mapping </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path extrusionok="f" connecttype="rect" gradientshapeok="t"></v:path><LOCK aspectratio="t" v:ext="edit"></LOCK></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, ad-bc</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">0, <U>is called </U>a Mobius transformation.
<p></FONT>
<p>
<TABLE cellSpacing=0 cellPadding=0 align=left border=1>
<TR>
<TD vAlign=top width=120>
<P><FONT face="Times New Roman">is defined to be
<p></FONT>
<p>
<P><FONT face="Times New Roman">is said to be
<p></FONT>
<p></TD></TR></TABLE>
<P><FONT face="Times New Roman">2. Something something(or adjective)
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman"> The difference A-B<U> is defined to be</U> the set of all elements of A which are not in B.
<p></FONT>
<p>
<P><FONT face="Times New Roman"> A real number that cannot be expressed as the ratio of two integers<U> is said to be</U> an irrational number.
<p></FONT>
<p>
<P><FONT face="Times New Roman"> Real numbers which are greater than zero <U>are said to be</U> positive.
<p></FONT>
<p>
<TABLE cellSpacing=0 cellPadding=0 align=left border=1>
<TR>
<TD vAlign=top width=60>
<P><FONT face="Times New Roman">define
<p></FONT>
<p>
<P><FONT face="Times New Roman">call
<p></FONT>
<p></TD></TR></TABLE>
<P><FONT face="Times New Roman">3. We something to be something.
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman"> We <U>define</U> the intersection of A and B<U> to be</U> the set of those elements common to both A and B.
<p></FONT>
<p>
<P><FONT face="Times New Roman"> We <U>call</U> real numbers that are less than zero (<U>to be</U>) negative numbers.
<p></FONT>
<p>
<P><FONT face="Times New Roman">4. </FONT>如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式:
<p>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<TABLE cellSpacing=0 cellPadding=0 align=left border=1>
<TR>
<TD vAlign=top width=115>
<P><FONT face="Times New Roman">is called
<p></FONT>
<p>
<P><FONT face="Times New Roman">is said to be
<p></FONT>
<p>
<P><FONT face="Times New Roman">is defined as
<p></FONT>
<p>
<P><FONT face="Times New Roman">is defined to be
<p></FONT>
<p></TD></TR></TABLE>
<P><FONT face="Times New Roman"> Let…, then…
<p></FONT>
<p>
<P><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"><U>Let</U> x=(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) be an n-tuple of real numbers. <U>Then</U> the set of all such n-tuples <U>is defined as</U> the Euclidean n-space R.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> <U>Let </U>d(x,y) denote the distance between two points x and y of a set A. <U>Then</U> the number
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> D= </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>
<p>
<p>
<P align=left><FONT face="Times New Roman"> <U>is called</U> the diameter of A.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">5</FONT>.如果被定义术语,需要满足某些条件,则可用如下形式:
<p>
<p>
<TABLE cellSpacing=0 cellPadding=0 align=left border=1>
<TR>
<TD vAlign=top width=120>
<P align=left><FONT face="Times New Roman">is called
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">is said to be
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">is defined as
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">is defined to be
<p></FONT>
<p></TD></TR></TABLE>
<P align=left><FONT face="Times New Roman"> If…, then…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> <U>If</U> the number of rows of a matrix A equals the number of its columns, <U>then</U> A is called a square matrix.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> <U>If </U>a function f is differentiable at every point of a domain D, <U>then it is said to be </U>analytic in D.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">6.</FONT>如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式:
<p>
<p>
<P align=left><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:path connecttype="rect" gradientshapeok="t"></v:path></v:shapetype><v:shape></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1027"'>
<P><FONT face="Times New Roman">is called</FONT></P>
<P><FONT face="Times New Roman">is said to be</FONT></P></DIV></TD></TR></TABLE><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1026"><FONT face="Times New Roman" size=3></FONT></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1026"'>
<P><FONT face="Times New Roman">Let</FONT></P>
<P><FONT face="Times New Roman">Suppose</FONT></P></DIV></TD></TR></TABLE><FONT face="Times New Roman"> …. If…then… …
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> <U>Let </U>f(z) be an analytic function defined on a domain D (</FONT>前提条件<FONT face="Times New Roman">). <U>If</U> for every pair or points</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, and </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">in D with </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, we have f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">)</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) (</FONT>直接条件<FONT face="Times New Roman">)</FONT>,<FONT face="Times New Roman"><U>then </U>f(z) <U>is called</U> a schlicht function or<U> is said to be</U> schlicht in D.
<p></FONT>
<p>
<P align=left>
<p>
<p> <P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman">7. </FONT>如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式:
<p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><v:shape></v:shape><TABLE cellSpacing=0 cellPadding=0 width="100%"><TR><TD BORDER-TOP: BORDER-LEFT: BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent?><DIV class=shape PADDING-LEFT: 7.2pt; PADDING-BOTTOM: 3.6pt; PADDING-TOP: 3.6pt? v:shape="_x0000_s1028"><P 0cm 0pt?><FONT face="Times New Roman">suppose</FONT></P><P 0cm 0pt?><FONT face="Times New Roman">assume</FONT></P></DIV></TD></TR></TABLE><FONT face="Times New Roman"> Let…and …. If…then…is called… <p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman"><p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman"><p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman"> <U>Let</U> D be a domain <U>and suppose</U> that f(z) is analytic in D.<U> If</U> for every pair of points </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">and </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">in D with</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, we have f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">)</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">), <U>then</U> f(z) is called a schlicht function. <p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman"><p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt TEXT-INDENT: 18pt; -18pt; mso-char-indent-count: mso-char-indent-size: -1.5; 12.0pt?><FONT face="Times New Roman">Notes: <p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt tab-stops: TEXT-INDENT: mso-list: level1 list -18.75pt; 18.75pt; l53 lfo70?><FONT face="Times New Roman">(a) </FONT>一种形式往往可写成另一种形式。 <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman">Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets. If</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">for all n, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending or a non-decreasing sequence. <p></FONT><p><P align=left 0cm 0pt; TEXT-ALIGN: left; TEXT-INDENT: mso-char-indent-count: mso-char-indent-size: 1.0; 12.0pt? 12pt;>我们可用一定语短语来代替“<FONT face="Times New Roman">If</FONT>”句,使其变为“<FONT face="Times New Roman">Let……then</FONT>”句 <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left; TEXT-INDENT: mso-char-indent-count: mso-char-indent-size: 1.0; 12.0pt? 12pt;><FONT face="Times New Roman">Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets with</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">for all n, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending or a non-decreasing sequence. <p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt tab-stops: TEXT-INDENT: mso-list: level1 list -18.75pt; 18.75pt; l53 lfo70?><FONT face="Times New Roman">(b) </FONT>注意“<FONT face="Times New Roman">Let</FONT>”,“<FONT face="Times New Roman">suppose</FONT>”(“<FONT face="Times New Roman">assume</FONT>”),“<FONT face="Times New Roman">if</FONT>”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为: <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman"> Suppose{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is a sequence of sets. If</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence. <p></FONT><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman"> Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets and suppose that</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence. <p></FONT><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman"> </FONT>但下面的句子是错误的(至少是不好的句子); <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman"> If{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is a sequence of sets, and let</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence. <p></FONT><p><P align=left 0cm TEXT-ALIGN: left; 0pt tab-stops: TEXT-INDENT: mso-list: level1 list -18.75pt; 18.75pt; l53 lfo70?><FONT face="Times New Roman">(c) </FONT>在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“<FONT face="Times New Roman">and</FONT>”,“<FONT face="Times New Roman">where</FONT>”,“<FONT face="Times New Roman">in this (that) case</FONT>”<FONT face="Times New Roman">…</FONT>请参看<FONT face="Times New Roman">PARTIA</FONT>第一课注<FONT face="Times New Roman">1</FONT>和第二课注<FONT face="Times New Roman">4</FONT>、<FONT face="Times New Roman">5</FONT>、<FONT face="Times New Roman">6</FONT>。 <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left; TEXT-INDENT: mso-char-indent-count: mso-char-indent-size: 1.0; 12.0pt? 12pt;><FONT face="Times New Roman">If every element of a set A also belongs to another set B, then A is said to be the subset of B, </FONT><U><FONT face="Times New Roman">and we write </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></U><p><p><P align=left 0cm TEXT-ALIGN: 0pt 18.75pt; left?><FONT face="Times New Roman"> A real number is said to be a rational if it can be expressed as the ratio of two integers, <U>where the denominator is not zero. <p></U></FONT><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman">(d) </FONT>在定义中,“<FONT face="Times New Roman">if</FONT>”句是关键句,且往往比较复杂,要特别注意在一些定义中,“<FONT face="Times New Roman">if</FONT>”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“<FONT face="Times New Roman">if</FONT>”句的结构作为例子加以说明: <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><U><FONT face="Times New Roman">If for every</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></U><U>>0, there is (there exists) a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that</U> <v:shape><v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape><U>whenever</U> 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>, then we say f(x) has a limit A at the point a. <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> 上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例: <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> A sequence of functions {<v:shape> <v:imagedata></v:imagedata></v:shape>} is said to have the Cauchy property uniformly on a set E if for any <v:shape><v:imagedata></v:imagedata></v:shape>>0, there is an N such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever n,m>N. <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> 当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。 <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> 下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。 <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> If, given any<v:shape> <v:imagedata></v:imagedata></v:shape>>0, there exists a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever (if,for) 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>,… <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?> If, corresponding to any <v:shape><v:imagedata></v:imagedata></v:shape>>0, a <v:shape><v:imagedata></v:imagedata></v:shape>>0 can be found such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>,… <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><FONT face="Times New Roman"> If, for every </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>>0,there is a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>implies <v:shape><v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>. <p><p><P align=left 0cm 0pt; TEXT-ALIGN: left?><p><p>
数学专业英语-(b)How to state a theorem?
<b>数学专业英语-(b)How to state a theorem?</b>
<P align=left>
<P><b></b></P>
<P><b></b></P>
<P align=left> 定理叙述的格式,基本上与数学术语的定义一样,只不过在术语的定义中,“then”句有比较固定的格式,而定理的“then”句则随其结果而变吧了。
<p>
<P align=left>1.某些定理可用简单句叙述。
<p>
<p>
<P align=left>The union of a finite number of closed sets is still a closed set.
<p>
<p>
<P align=left>The space <v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path extrusionok="f" connecttype="rect" gradientshapeok="t"></v:path><LOCK aspectratio="t" v:ext="edit"></LOCK></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>(E,f) is complete.
<p>
<p>
<P align=left>2. 如果定理的结论是在一定前提下得到的,则可用下面形式:
<p>
<p>
<P align=left> “Suppose…Then…”or“Let….Then…”
<p>
<p>
<P align=left> Let f(x) be a continuous function defined on. Then f(x) attains its maximum and minimum on .
<p>
<p>
<P align=left> Suppose that f(z) is analytic in a simply connected domain D, then for any closed simple curve C lying within D, we have
<p>
<p>
<P align=left> <v:shape><v:imagedata></v:imagedata></v:shape>
<p>
<p>
<P align=left>3. 如果定理的结论在一定假设条件下成立,则可用下面的形式
<p>
<p>
<P align=left> “If…, then…”
<p>
<p>
<P align=left> If P(z) is a non-constant polynomial then there is a complex number c with P(c)=0
<p>
<p>
<P align=left>4. 如果定理的结论除了在一定条件下,还需在一定前提下才成立,这时可用如下形式
<p>
<p>
<P align=left> “Let…. If…,then…”or
<p>
<p>
<P align=left> “Suppose…. If…,then…”
<p>
<p>
<P align=left> Let<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>be four distinct points. If all these four points lie on a circle, then the cross-ratio(<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>) is real.
<p>
<p>
<P align=left>5. 如果定理的结论在不同层次的几种条件下面成立,可用如下形式:
<p>
<p>
<P align=left> “Let…, and assume….If…then…”
<p>
<p>
<P align=left> Let f(x) be defined on open interval I, and assume that f(x) has a relative maximum or a relative minimum at an interior point c of I. If the derivative f’(c) exists, then f’(c)=0.
<p>
<p>
<P align=left>
<p>
<p>
数学专业英语-(c)How to write an abstract?
<b>数学专业英语-(c)How to write an abstract?</b>
<P align=left>
<P><b></b></P>
<P><b></b></P>
<P align=left> 论文摘要的写法不像数学术语的定义和数学定理的叙述那样。有一定的格式可循,但对于初学者来说仍有一些常见的句子可加以摹仿。现略举一些这样的句子,并附上一些论文摘要作为例子,供读者参考。需要指出的是,我们这里所举的例句对普遍的文章均适合,比较抽象,具体的论文摘要除了可用上下面某些句子外,必须有具体内容,更确切地说摘要中要包括一些 key words 以说明该文涉及的内容,但一般不要在摘要中引用文献。
<p>
<P align=left>1.开门见山,说明文章内容,可用下面的句子起句:
<p>
<p>
<P align=left><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:path connecttype="rect" gradientshapeok="t"></v:path></v:shapetype><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1028"></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1028"'>
<P><FONT face="Times New Roman">prove</FONT></P>
<P><FONT face="Times New Roman">show</FONT></P>
<P><FONT face="Times New Roman">present</FONT></P>
<P><FONT face="Times New Roman">develop</FONT></P>
<P><FONT face="Times New Roman">generalize</FONT></P>
<P><FONT face="Times New Roman">investigate</FONT></P>
<P><FONT face="Times New Roman">
<p></FONT>
<p></DIV></TD></TR></TABLE><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1027"><FONT face="Times New Roman" size=3></FONT></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1027"'>
<P><FONT face="Times New Roman">paper</FONT></P>
<P><FONT face="Times New Roman">note</FONT></P></DIV></TD></TR></TABLE><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1026"><FONT face="Times New Roman" size=3></FONT></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1026"'>
<P><FONT face="Times New Roman">aim</FONT></P>
<P><FONT face="Times New Roman">object </FONT></P>
<P><FONT face="Times New Roman">purpose</FONT></P></DIV></TD></TR></TABLE> The of this is to …
<p>
<p>
<P align=left>
<p>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">
<p></FONT>
<p>
<P align=left><v:shape><FONT face="Times New Roman"></FONT></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1029"'>
<P><FONT face="Times New Roman">prove</FONT></P>
<P><FONT face="Times New Roman">show</FONT></P>
<P><FONT face="Times New Roman">present</FONT></P>
<P><FONT face="Times New Roman">develop</FONT></P>
<P><FONT face="Times New Roman">generalize</FONT></P>
<P><FONT face="Times New Roman">investigate</FONT></P></DIV></TD></TR></TABLE><FONT face="Times New Roman">It is the purpose of this paper to </FONT>…
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1030"></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1030"'>
<P><FONT face="Times New Roman">is concerned</FONT></P>
<P><FONT face="Times New Roman">deals </FONT></P></DIV></TD></TR></TABLE>This paper with…
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left><v:shape></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">
<TR>
<TD>
<DIV class='shape v:shape="_x0000_s1031"'>
<P><FONT face="Times New Roman">prove</FONT></P>
<P><FONT face="Times New Roman">present </FONT></P>
<P><FONT face="Times New Roman">propose to show</FONT></P></DIV></TD></TR></TABLE>In this paper we …
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>
<p>
<p>
<P align=left>2.如果需要简略回顾历史,然后再说明自己文章的内容,则可参考采用下面句子。
<p>
<p>
<P align=left><FONT face="Times New Roman"> The problem…was first treated by…and later…improved by…The purpose of this paper is to prove that it holds in a more general case.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> …first raised the problem which was later partly solved by…We now solve this problem in the case of …
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">3.</FONT>如果文章推广了别人的结果,或减弱了别人结果中的条件,则可参考采用下面句子:
<p>
<p>
<P align=left><FONT face="Times New Roman"> The purpose of this paper is to generalize the results obtained by…to a more general case,i.e.,…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> In this paper we shall prove several theorems which are generalizations to the results given by…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> This paper intends to remove some unnecessary assumptions (e.g., regularity) from the paper on…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> This paper deals with generalizations of the following problem…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> This paper improves the result of…on…by weakening the conditions…
<p></FONT>
<p>
<P align=left>例:
<p>
<p>
<P align=left><FONT face="Times New Roman"> It is the purpose of the present paper to point out that certain basic aspects of information-processing systems possess dynamical analogy, and to show that these analogies can be exploited to obtain deeper insights into the behavior of complex systems.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">We present a general comparision principle for systems of boundary value problems and employ this result for proving existence and uniqueness of solutions, stability and existence of periodic solutions for non-linear boundary value problems.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">We proved a theorem for generalized non-expansive mappings in locally convex spaces and extend the results of Kirk and Kaun. We also obtain a theorem which generalizes the results of Brouder.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">This paper is concerned with the existence of multiple solutions of boundary problems for the non-linear differential equation of the form….
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">This paper is concerned with the question of local uniqueness of solutions of Cauchy Problem for elliptic partial differential equations with characteristics of multiplicity not greater than 2.
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">The object of this paper is to investigate the behavior at the boundary of solutions to the uniformly semi-linear equation…
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman">The aim of this paper is to try to minimize the functional
<p></FONT>
<p>
<P align=left><FONT face="Times New Roman"> </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path extrusionok="f" connecttype="rect" gradientshapeok="t"></v:path><LOCK aspectratio="t" v:ext="edit"></LOCK></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>
<p>
<p>
<P align=left><FONT face="Times New Roman">over the class of all absolutely continuous functions f(x) which satisfy the boundary conditions f( </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">)=</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">,f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">)=</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">.
<p></FONT> 顶一下 尽管我还没写过英语论文,但还是十分感谢你 参加MCM比赛就可以有锻炼的机会了! 我不懂英语 <P>对学习数学专业英语还是有一定的用处的.</P><P>谢了~!!</P> 顶!