Mathematica求解方程组遇阻
如下代码NSolve输入后,直接原样输出,为什么?用Solve求解输出(Solve was unable to solve the system with inexact coefficients or the
system obtained by direct rationalization of inexact numbers present
in the system. Since many of the methods used by Solve require exact
input, providing Solve with an exact version of the system may help)
怎样可以求解这个方程组?
难道它真的不可解吗?
NSolve[{ƛ <= 1 && ƛ >= 0, ƛ <= 1 && ƛ >= 0,
0 == k[1,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (q -
1.8420227750373133` r^0.30000000000000004` w^0.7`),
0 == k[1,
1]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^1.5` (nn + nn +
nn +
nn)^0.7` (q[1,
1] - (1.8420227750373133` r^0.30000000000000004` w[
1]^0.7`)/(nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)^1.5`),
0 == k[1,
2]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^0.75` (nn + nn +
nn +
nn)^0.7` (q[1,
2] - (1.8420227750373133` r^0.30000000000000004` w[
1]^0.7`)/(nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)^0.75`),
0 == k[2,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (q -
1.8420227750373133` r^0.30000000000000004` w^0.7`),
0 == k[2,
1]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn +
nn)^1.5` (q[2,
1] - (1.8420227750373133` r^0.30000000000000004` w[
2]^0.7`)/(nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)^1.5`),
0 == k[2,
2]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn +
nn)^0.75` (q[2,
2] - (1.8420227750373133` r^0.30000000000000004` w[
2]^0.7`)/(nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)^0.75`),
0 == (p - q) z,
0 == (p - q) z,
0 == (p - q) z,
0 == (p - 21 q) z,
0 == (p - 31 q) z,
0 == (p - 31 q) z,
0 == (p - 21 q) z,
0 == (p - 31 q) z,
0 == (p - 31 q) z,
0 == (p - q) z,
0 == (p - q) z,
0 == (p - q) z,
0 == 200 r + 60 (-6 + R) +
50 (-6 + R) - (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn) \,
50 == h[2,
1] (nn + nn + nn +
nn + nn + nn),
60 == h[1,
1] (nn + nn + nn +
nn + nn + nn),
200 == k + k + k + k + k + k,
400 == nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn,
h == (
0.42857142857142855` (p x + p x +
p x))/R,
h ==
0.07142857142857142` (p x + p x +
p x),
h == (
0.42857142857142855` (p x + p x +
p x))/R,
h ==
0.07142857142857142` (p x + p x +
p x),
k == (1/r)
0.30000000000000004` k[1,
1]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^1.5` (nn + nn +
nn + nn)^0.7` q,
k == (1/r)
0.30000000000000004` k[1,
2]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^0.75` (nn + nn +
nn + nn)^0.7` q,
k == (
0.30000000000000004` k[1,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` q)/r,
k == (1/r)
0.30000000000000004` k[2,
1]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^1.5` q,
k == (1/r)
0.30000000000000004` k[2,
2]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^0.75` q,
k == (
0.30000000000000004` k[2,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` q)/r,
nn + nn + nn + nn +
nn +
nn[1, 2, 2,
3] == ((nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn) (3 +
10 (nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)) (nn[2,
1, 1, 1] + nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn))/(203 +
5 (nn + nn + nn +
nn + nn + nn))^2,
4 + 10 (1 - ƛ) (nn + nn +
nn + nn + nn +
nn) ==
2 + 10 ƛ[
1] (nn + nn + nn +
nn + nn + nn),
k^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^1.5` (nn + nn +
nn + nn)^0.7` ==
z + 21 z,
nn + nn + nn +
nn == (1/w)
0.7` k[1,
1]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^1.5` (nn + nn +
nn + nn)^0.7` q,
k^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^0.75` (nn + nn +
nn + nn)^0.7` ==
z + 31 z,
nn + nn + nn +
nn == (1/w)
0.7` k[1,
2]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^0.75` (nn + nn +
nn + nn)^0.7` q,
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` ==
z + 31 z,
nn + nn + nn +
nn == (
0.7` k[1,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` q)/w,
nn + nn + nn + nn +
nn +
nn[2, 1, 2,
3] == ((nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn +
nn) (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn) (3 +
5 (nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn)))/(203 +
9 (nn + nn + nn +
nn + nn + nn))^2,
nn + nn + nn +
nn == (1/w)
0.7` k[2,
1]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^1.5` q,
nn + nn + nn +
nn == (1/w)
0.7` k[2,
2]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^0.75` q,
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` ==
31 z + z,
nn + nn + nn +
nn == (
0.7` k[2,
3]^0.30000000000000004` (nn + nn +
nn + nn)^0.7` q)/w,
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^0.75` ==
31 z + z,
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^1.5` ==
21 z + z,
2 + 5 (1 - ƛ) (nn + nn + nn +
nn + nn + nn) ==
1 + 5 ƛ (nn + nn + nn +
nn + nn + nn),
200 r + k[1,
1]^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^1.5` (nn + nn +
nn + nn)^0.7` +
k^0.30000000000000004` (nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn)^0.75` (nn + nn +
nn + nn)^0.7` +
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` +
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` +
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^0.75` +
k^0.30000000000000004` (nn + nn +
nn + nn)^0.7` (nn +
nn + nn + nn +
nn + nn + nn +
nn + nn + nn +
nn + nn)^1.5` ==
660 + 6 h[1,
2] (nn + nn + nn +
nn + nn + nn) + (1 -
ƛ) (nn + nn + nn +
nn + nn + nn) (4 +
10 (1 - ƛ) (nn + nn +
nn + nn + nn +
nn)) +
ƛ (nn + nn + nn +
nn + nn + nn) (2 +
10 ƛ (nn + nn + nn +
nn + nn + nn)) + (nn[1,
2, 1, 1] + nn + nn + nn +
nn + nn) (203 +
5 (nn + nn + nn +
nn + nn + nn)) + (nn[2,
1, 1, 1] + nn + nn + nn +
nn + nn) (203 +
9 (nn + nn + nn +
nn + nn + nn)) +
6 h[2,
2] (nn + nn + nn +
nn + nn + nn) + (1 -
ƛ) (nn + nn + nn +
nn + nn + nn) (2 +
5 (1 - ƛ) (nn + nn +
nn + nn + nn +
nn)) +
ƛ (nn + nn + nn +
nn + nn + nn) (1 +
5 ƛ (nn + nn + nn +
nn + nn + nn)) + (nn[1,
1, 1, 1] + nn + nn + nn +
nn + nn) p x[1, 1,
1] + (nn + nn + nn +
nn + nn + nn) p x[1,
1, 2] + (nn + nn + nn +
nn + nn + nn) p x[1,
1, 3] + (nn + nn + nn +
nn + nn + nn) p x[1,
2, 1] + (nn + nn + nn +
nn + nn + nn) p x[1,
2, 2] + (nn + nn + nn +
nn + nn + nn) p x[1,
2, 3] + (nn + nn + nn +
nn + nn + nn) p x[2,
1, 1] + (nn + nn + nn +
nn + nn + nn) p x[2,
1, 2] + (nn + nn + nn +
nn + nn + nn) p x[2,
1, 3] + (nn + nn + nn +
nn + nn + nn) p x[2,
2, 1] + (nn + nn + nn +
nn + nn + nn) p x[2,
2, 2] + (nn + nn + nn +
nn + nn + nn) p x[2,
2, 3], p == Min, 21 q],
p == Min, 31 q],
p == Min, 31 q],
p == Min, q],
p == Min, q],
p == Min, q],
w == h R + p x + p x +
p x,
w == 4 + 6 h +
10 (1 - ƛ) (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w == 2 + 6 h +
10 ƛ (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w ==
203 + 9 (nn + nn + nn +
nn + nn + nn) +
h R + p x + p x +
p x,
w == 205 + 6 h +
9 (nn + nn + nn +
nn + nn + nn) +
5 (1 - ƛ) (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w == 204 + 6 h +
9 (nn + nn + nn +
nn + nn + nn) +
5 ƛ (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w - w ==
203 + 9 (nn + nn + nn +
nn + nn + nn),
w ==
203 + 5 (nn + nn + nn +
nn + nn + nn) +
h R + p x + p x +
p x,
w == 207 + 6 h +
10 (1 - ƛ) (nn + nn + nn +
nn + nn + nn) +
5 (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w == 205 + 6 h +
10 ƛ (nn + nn + nn +
nn + nn + nn) +
5 (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w == h R + p x + p x +
p x,
w ==
2 + 6 h +
5 (1 - ƛ) (nn + nn + nn +
nn + nn + nn) +
p x + p x + p x,
w == 1 + 6 h +
5 ƛ (nn + nn + nn +
nn + nn + nn) +
p x + p x +
p x, -w + w ==
203 + 5 (nn + nn + nn +
nn + nn + nn),
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x == (
0.42857142857142855` (p x + p x +
p x))/p,
4 h^0.3` x^0.2` x^0.3` x^0.2` == u,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x + x == z + z,
x == (
0.42857142857142855` (p x + p x +
p x))/p,
x + x == z + z,
4 h^0.3` x^0.2` x^0.3` x^0.2` == u,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x + x == z + z,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x == (
0.42857142857142855` (p x + p x +
p x))/p,
3 h^0.3` x^0.2` x^0.3` x^0.2` == u,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x + x == z + z,
x == (
0.42857142857142855` (p x + p x +
p x))/p,
x + x == z + z,
3 h^0.3` x^0.2` x^0.3` x^0.2` == u,
x == (
0.28571428571428575` (p x + p x +
p x))/p,
x + x == z + z, r >= 0,
ƛ >= 0, ƛ >= 0, h >= 0, h >= 0, h >= 0,
h >= 0, k >= 0, k >= 0, k >= 0,
k >= 0, k >= 0, k >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, nn >= 0,
nn >= 0, nn >= 0, p >= 0,
p >= 0, p >= 0, p >= 0, p >= 0,
p >= 0, q >= 0, q >= 0, q >= 0,
q >= 0, q >= 0, q >= 0, R >= 0,
R >= 0, w >= 0, w >= 0, x >= 0,
x >= 0, x >= 0, x >= 0, x >= 0,
x >= 0, x >= 0, x >= 0, x >= 0,
x >= 0, x >= 0, x >= 0, z >= 0,
z >= 0, z >= 0, z >= 0, z >= 0,
z >= 0, z >= 0, z >= 0, z >= 0,
z >= 0, z >= 0, z >= 0}, {r, ƛ, ƛ,
k, k, k, k, k, k, w, w,
h, h, h, h, R, R, p,
p, p, p, p, p, q, q,
q, q, q, q, x, x,
x, x, x, x, x,
x, x, x, x, x,
nn, nn, nn, nn,
nn, nn, nn, nn,
nn, nn, nn, nn,
nn, nn, nn, nn,
nn, nn, nn, nn,
nn, nn, nn, nn,
z, z, z, z, z,
z, z, z, z, z,
z, z}]
页:
[1]