[讨论]矩阵的特征值分解与矩阵的奇异值分解
<span style="FONT-SIZE: 14pt; FONT-FAMILY: 宋体; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";"></span><span lang="EN-US" style="FONT-SIZE: 14pt;"><p><font face="宋体"><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 36pt; TEXT-INDENT: -36pt; mso-list: l0 level1 lfo1; tab-stops: list 36.0pt;"><span lang="EN-US" style="FONT-SIZE: 14pt; mso-fareast-font-family: "Times New Roman";"><span style="mso-list: Ignore;"><font face="Times New Roman"><span style="FONT: 7pt "Times New Roman";"> </span></font></span></span><span style="FONT-SIZE: 14pt; FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';">矩阵的特征值分解与矩阵的奇异值分解到底有什么关系?一般都是对矩阵进行奇异值分解,而对其自相关矩阵进行特征值分解,那么他们的特征向量有什么关系?</span><span lang="EN-US" style="FONT-SIZE: 14pt;"><p></p></span></p></font></p></span> <p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><font face="楷体_GB2312"><font color="#0080ff"><strong>奇异值分解</strong></font>是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。</font><br/><br/></span><b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">定义</span></b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">:设A为<span lang="EN" xmllang="EN">m*n</span>阶矩阵,</span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">A<sup>H</sup>A</span><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">的<span lang="EN" xmllang="EN">n</span>个特征值的非负平方根叫作<span lang="EN" xmllang="EN">A</span>的奇异值。记为<span style="mso-bidi-font-weight: bold;">σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN">(A)</span>。</span></font></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span lang="EN" xmllang="EN"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;"><font face="楷体_GB2312"><font size="2" style="BACKGROUND-COLOR: #ffffff;">如果把<span lang="EN" xmllang="EN">A<sup>H</sup>A</span><span style="mso-bidi-font-weight: bold;">的特征值记为<span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">λ</span><sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN">(A)</span><span style="mso-bidi-font-weight: bold;">,则σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN">(A)</span>=</font><span style="mso-bidi-font-weight: bold;"><font size="2" style="BACKGROUND-COLOR: #ffffff;">λ<sub><span lang="EN" xmllang="EN">i</span></sub><span lang="EN" xmllang="EN">(A<sup>H</sup>A)^(1/2)</span>。</font></span></font></span></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span lang="EN" xmllang="EN"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;"><span style="mso-bidi-font-weight: bold;"><font size="2" style="BACKGROUND-COLOR: #ffffff;"><br/> </font></span></span></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;"><br/><font size="2" style="BACKGROUND-COLOR: #ffffff;">定理:</font></span></b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><font size="2" style="BACKGROUND-COLOR: #ffffff;">(奇异值分解)设<span lang="EN" xmllang="EN">A</span>为<span lang="EN" xmllang="EN">m*n</span>阶复矩阵,则存在<span lang="EN" xmllang="EN">m</span>阶酉阵<span lang="EN" xmllang="EN">U</span>和<span lang="EN" xmllang="EN">n</span>阶酉阵<span lang="EN" xmllang="EN">V</span>,使得:</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"> </p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><font size="2" style="BACKGROUND-COLOR: #ffffff;"> A = U*S*V’</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">其中<span lang="EN" xmllang="EN">S=diag(</span>σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">,</span><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">σ<sub><span lang="EN" xmllang="EN">2</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">,……<span style="mso-bidi-font-weight: bold;">,</span></span><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">σ<sub><span lang="EN" xmllang="EN">r</span></sub><span lang="EN" xmllang="EN">)</span>,σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">>0</span><span lang="EN" xmllang="EN"><font face="Times New Roman">(i=1,</font></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">…,r</span><span lang="EN" xmllang="EN"><font face="Times New Roman">)</font></span><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';">,</span><span lang="EN" xmllang="EN"><font face="Times New Roman">r=rank(A)</font></span></font></font><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';"><font size="2" style="BACKGROUND-COLOR: #ffffff;">。</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';"><font size="2" style="BACKGROUND-COLOR: #ffffff;"><br/> </font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;"><br/><font size="2" style="BACKGROUND-COLOR: #ffffff;">推论:</font></span></b><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2">设<span lang="EN" xmllang="EN">A</span>为<span lang="EN" xmllang="EN">m*n</span>阶实矩阵,则存在<span lang="EN" xmllang="EN">m</span>阶正交阵<span lang="EN" xmllang="EN">U</span>和<span lang="EN" xmllang="EN">n</span>阶正交阵<span lang="EN" xmllang="EN">V</span>,使得</font></font></span></p><p class="MsoNormal" align="center" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: center;"><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><font size="2" style="BACKGROUND-COLOR: #ffffff;">A = U*S*V’</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">其中<span lang="EN" xmllang="EN">S=diag(</span>σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">,</span><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">σ<sub><span lang="EN" xmllang="EN">2</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">,……<span style="mso-bidi-font-weight: bold;">,</span></span><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">σ<sub><span lang="EN" xmllang="EN">r</span></sub><span lang="EN" xmllang="EN">)</span>,σ<sub><span lang="EN" xmllang="EN">i</span></sub></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">>0</span>
<span lang="EN" xmllang="EN"><font face="Times New Roman">(i=1,</font></span><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体;">…,r</span><span lang="EN" xmllang="EN"><font face="Times New Roman">)</font></span><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';">,</span><span lang="EN" xmllang="EN"><font face="Times New Roman">r=rank(A)</font></span></font></font><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';"><font size="2" style="BACKGROUND-COLOR: #ffffff;">。<br/></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><br/><font face="楷体_GB2312" size="2" style="BACKGROUND-COLOR: #ffffff;"><strong>说明:</strong></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 42pt; TEXT-INDENT: -30pt; mso-list: l0 level1 lfo1; tab-stops: list 42.0pt;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2"><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><span style="mso-list: Ignore;">1、<span style="FONT: 7pt 'Times New Roman';"> </span></span></span>
<span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">奇异值分解非常有用,对于矩阵<span lang="EN" xmllang="EN">A(m*n)</span>,存在<span lang="EN" xmllang="EN">U(m*m)</span>,<span lang="EN" xmllang="EN">V(n*n)</span>,<span lang="EN" xmllang="EN">S(m*n)</span>,满足<span lang="EN" xmllang="EN">A = U*S*V’</span>。<span lang="EN" xmllang="EN">U</span>和<span lang="EN" xmllang="EN">V</span>中分别是<span lang="EN" xmllang="EN">A</span>的奇异向量,而<span lang="EN" xmllang="EN">S</span>是<span lang="EN" xmllang="EN">A</span>的奇异值。<span lang="EN" xmllang="EN">AA'</span>的正交单位特征向量组成<span lang="EN" xmllang="EN">U</span>,特征值组成<span lang="EN" xmllang="EN">S'S</span>,<span lang="EN" xmllang="EN">A'A</span>的正交单位特征向量组成<span lang="EN" xmllang="EN">V</span>,特征值(与<span lang="EN" xmllang="EN">AA'</span>相同)组成<span lang="EN" xmllang="EN">SS'</span>。因此,奇异值分解和特征值问题紧密联系。</span></font></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 42pt; TEXT-INDENT: -30pt; mso-list: l0 level1 lfo1; tab-stops: list 42.0pt;"><font style="BACKGROUND-COLOR: #ffffff;"><font size="2"><span lang="EN" xmllang="EN" style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;"><span style="mso-list: Ignore;">2、<span style="FONT: 7pt 'Times New Roman';"> </span></span></span>
<span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">奇异值分解提供了一些关于<span lang="EN" xmllang="EN">A</span>的信息,例如非零奇异值的数目(<span lang="EN" xmllang="EN">S</span>的阶数)和<span lang="EN" xmllang="EN">A</span>的秩相同,一旦秩<span lang="EN" xmllang="EN">r</span>确定,那么<span lang="EN" xmllang="EN">U</span>的前<span lang="EN" xmllang="EN">r</span>列构成了<span lang="EN" xmllang="EN">A</span>的列向量空间的正交基。</span></font></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 42pt; TEXT-INDENT: -30pt; mso-list: l0 level1 lfo1; tab-stops: list 42.0pt;"> </p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 42pt; TEXT-INDENT: -30pt; mso-list: l0 level1 lfo1; tab-stops: list 42.0pt;"><font size="2" style="BACKGROUND-COLOR: #ffffff;"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">关于奇异值分解中当考虑的对象是实矩阵时: S对角元的平方恰为A'A特征值的说明. (对复矩阵类似可得)<br/><br/>从上面我们知道矩阵的奇异值分解为: A=USV, 其中U,V是正交阵(所谓B为正交阵是指B'=B<sup>-1</sup>, 即B'B=I), S为对角阵.<br/><br/>A'A=V'S'U'USV=V'S'SV=V<sup>-1</sup>S<sup>2</sup>V<br/><br/>上式中, 一方面因为S是对角阵, S'S=S<sup>2</sup>, 且S<sup>2</sup>对角元就是S的对角元的平方. 另一方面注意到A'A是相似与S<sup>2</sup>的, 因此与S<sup>2</sup>有相同特征值.</span></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt 42pt; TEXT-INDENT: -30pt; mso-list: l0 level1 lfo1; tab-stops: list 42.0pt;"><font size="2" style="BACKGROUND-COLOR: #ffffff;"><span style="FONT-SIZE: 12pt; COLOR: black; FONT-FAMILY: 宋体; mso-font-kerning: 0pt; mso-bidi-font-family: 宋体; mso-bidi-font-weight: bold;">其实奇异值可以认为是一种特殊的矩阵范数!</span></font></p> <p><font size="2">谢谢管理员madio先生的热心解答,谢谢拉! </font></p> 谢谢 <p> 受教了 </p><p>谢谢 </p> 楼主给力了。 非常感谢了1! 谢谢楼主,真是太好了 谢谢楼主……辛苦啦!………………
页:
[1]
2