雩风三日 发表于 2020-12-24 10:34

基于BP神经网络的手写数字识别系统研究

基于BP神经网络的手写数字识别系统研究

    手写数字识别技术是近年来研究的热点,具有广泛的应用前景,同时也是一个非常具有挑战性的课题。人工神经网络是当今智能控制领域最活跃的分支之一,它所具有的并行计算能力、容错能力、泛化能力,以及以任意精度逼近未知非线性对象的特点,使其为手写数字的识别提供了一种新的方法.
    本论文采用Visual C++6.0编制了一套基于BP神经网络的手写数字识别系统,该系统由图像采集、图像预处理和数字识别三个模块组成,其中,图像采集模块采用VFW的方法来实现;图像预处理模块包括256色图转化成灰度图、二值化、梯度锐化、倾斜度调整、字符分割、归一化以及紧缩重排;数字识别模块采用三层BP神经网络来实现。论文重点探讨了BP神经网络的算法、构造以及各种结构参数的选取和优化。
    实验结果表明本论文所设计的手写数字识别系统具有较好的识别率,同时也说明BP神经网络技术用于手写数字识别的可行性。

关键词:手写数字识别;BP神经网络;VFW;图像处理

页: [1]
查看完整版本: 基于BP神经网络的手写数字识别系统研究