基于BP神经网络的风电机组钢混组合式塔架结构频率预测
基于BP神经网络的风电机组钢混组合式塔架结构频率预测风电机组塔架结构固有频率设计是风力发电结构体系设计的基础。针对风电机组新型钢混组合式塔架(“混塔”)结构固有频率传统理论计算和有限元法计算的不足,提出了基于BP神经网络算法进行频率预测的新方法。首先,利用有限元计算和分析,确定了训练模型的特征量和标签;然后,利用32个有限元计算样本,基于BP神经网络算法训练了可用于混塔结构频率分析的模型。经验证,该方法对混塔的一阶频率预测误差仅约为0.1%,具有很高的准确性;利用不同的样本集训练的模型也能快速准确预测混塔一阶频率,说明算法具有高度的稳定性;该方法还可用来预测混塔的多阶频率,仍显示出高度的准确性。此外,与基于有限元的频率计算相比,该方法具有突出的计算效率。整体上,本文提出的基于BP神经网络的混塔结构固有频率预测新方法,具有高度的可行性、精准性和高效性,可为风力发电机组塔架结构体系设计提供重要的指导。
关键词:风机;钢混塔架结构;机器学习;BP神经网络;频率预测;有限元
页:
[1]