雩风三日 发表于 2021-1-14 23:20

基于优化算法竞赛场景的改进data_profile技术

基于优化算法竞赛场景的改进data_profile技术

       数值比较是评估最优化算法特别是全局优化算法必不可少的手段,通常利用已知全局最优值的测试函数集来对优化算法进行性能评估。Data profile技术是用于比较确定性最优化算法的一种数据分析技术,最近被推广到随机优化算法的数值比较中。但data  profile技术存在一个不良性质,得到的profile曲线会随着参与比较的优化算法的不同而改变。这一“传递无效性”缺陷不利于普通用户对该技术的认识和使用。分析表明,导致“传递无效性”的根源在于data profile的“收敛条件”定义,笔者提出的新“收敛条件”可以消除该缺陷,条件是需要用到目标函数的全局最优值,因而适用于最优值已知的众多优化算法竞赛场景。大量数值实验表明,改进的data profile技术消除了“传递无效性”缺陷,有利于不同算法竞赛之间结果的相互验证和推广使用。

关键词:最优化算法;数值比较;data profile技术;算法竞赛




页: [1]
查看完整版本: 基于优化算法竞赛场景的改进data_profile技术