k近邻法 代码学习
k近邻法(k-Nearest Neighbors,简称kNN)是一种基本的分类和回归方法,它的功能主要包括以下几个方面:1.分类: k近邻法可以用于分类任务,即将新的数据点分到已知类别中的某一类。它通过计算新数据点与训练数据集中的各个样本点的距离,然后选取与新数据点距离最近的k个样本点,根据这k个样本点的类别进行投票或加权投票,来确定新数据点的类别。
2.回归: 除了分类,k近邻法也可以用于回归任务,即预测数值型的目标变量。在回归问题中,k近邻法计算新数据点与训练数据集中的各个样本点的距离,然后选取与新数据点距离最近的k个样本点,根据这k个样本点的目标变量值进行加权平均,来预测新数据点的目标变量值。
3.非参数模型: k近邻法是一种非参数模型,不对数据的分布做任何假设,因此具有很强的灵活性。它可以适用于各种类型的数据,包括线性可分和非线性可分的数据,以及具有复杂结构的数据。
4.简单直观: k近邻法的原理非常简单直观,易于理解和实现。它没有复杂的模型结构和参数需要调整,只需要选择合适的k值和距离度量方法即可。
5.适用性广泛: k近邻法可以应用于多种领域,包括分类、回归、聚类、异常检测等。它在实际应用中被广泛使用,尤其在小规模数据集和无法确定数据分布的情况下表现良好。
总的来说,k近邻法是一种简单而有效的机器学习方法,具有广泛的应用领域和灵活性,但也存在一些缺点,如计算复杂度高、需要大量的存储空间等。
页:
[1]