数学建模社区-数学中国

标题: 求解一个线性规划题 [打印本页]

作者: flying1208    时间: 2011-1-16 17:05
标题: 求解一个线性规划题
有一个线性规划题不知道该怎么做,求高人给解一下,并说说怎么解得,谢谢了; ^! b- ^1 o8 T7 |
优化问题.jpg
$ ^5 W- \$ n$ [2 `: K5 ^
作者: x371611372    时间: 2011-1-16 17:14
加油哦 哦哦哦哦  Contents 1. Introduction..................................................................................................................................................3 1.1 Why does toll way collects toll? ………………………………………….…………………….3 1.2 Toll modes………………………………………………………………………………………………3 1.3 Toll collection methods……………………………………………………………………….……3 1.4 Annoyance in toll plazas………………………………………….………….…………………….3 1.5 The origin of the toll way problem……………………...……………………………………...3 1.6 Queuing theory…………………………………………………………………………………...…...4 2. The Description of Problem….............................................................................................................5 2.1 How do we approximate the whole course of paying toll? ............................................5 2.2 How do we define the optimal configuration? ........................…………….………….5 2.2.1 From the perspective of motorist…………………………………….………………….5 2.2.2 From the perspective of the toll plaza…………………………………………………6 2.2.3 Compromise…………………………………...……………………………………...………..6 2.3 Overall optimization and local optimization……………………………..……………….…6 2.4 The differences in weights and sizes of vehicles………………………………………..…7 2.5 What if there is no data available? ..............................................................................................7 3. Models……………..........................................................................................................................................7 3.1 Basic Model............................................................................................................................................7 3.1.1 Symbols and Definitions………………………………..…...……………………………...7 3.1.2 Assumptions……………………………………………………………….……..……………..8 3.1.3 The Foundation of Model………………………………………………………………….9 3.1.4 Solution and Result……………………………………………………………….………...11 3.1.5 Analysis of the Result……………………………………………….………………………..……….….11 3.1.6 Strength and Weakness………………………………………………….…………….…..13 3.2 Improved Model.................................................................................................14 3.2.1 Extra Symbols……………………………………..………………………...…………………......................14 3.2.2 Additional Assumptions………………………………………………...…..…………………………..14 3.2.3 The Foundation of Model………………………………..…………………………………………….14 3.2.4 Solution and Result………………………………………….……………………………..……………...15 3.2.5 Analysis of the Result…………………………………………….……………………..…………….….18 3.2.6 Strength and Weakness……………………………………………….……………….…..19 4. Conclusions.................................................................................................................................................19 4.1 Conclusions of the problem……………………………………..……………..19 4.2 Methods used in our models…………………………………...……………………..…………19 4.3 Application of our models…………………………………………………..………………..….19 5. Future Work.............................................................................................................................................19 5.1 Another model………………………………………………………………………………………19 5.2 Another layout of toll plaza………………………………………………………..……………23 5.3 The newly- adopted charging methods………………………………………..……………23 6. References..................................................................................................................................................23 7. Appendix.....................................................................................................................................................23 Programs and codes………………………………………………………………..……………………24
作者: flying1208    时间: 2011-1-16 19:30
回复 x371611372 的帖子- t$ q- w0 h( G5 U2 ]& P7 R3 Q
大哥啊,你这是哪本书啊
* ^; w' N* ^2 b) y) G1 }7 L# g
   
作者: 水木年华zzu    时间: 2011-1-16 19:59
x1,和x2 的约束形成一个凸集,找直线和凸集的交点,就可以求出lamda的值了
作者: flying1208    时间: 2011-1-17 23:50
回复 水木年华zzu 的帖子2 p- N2 D4 r$ H5 V, j
答案为x1约等于2.8,x2约等于3.2,我主要是不知道这是怎么求出来的,怎么才能在上面两个式子间求一个相对最优的解呢
2 `5 f, X: a9 N/ D& B# T7 i5 D0 e1 s/ z; G1 l7 R% }" D9 X
   




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5