数学建模社区-数学中国

标题: 圆相交相交弦定理不成立证据 [打印本页]

作者: yyxcgwxok    时间: 2011-2-17 19:58
标题: 圆相交相交弦定理不成立证据
圆相交相交弦定理不成立证据!!!!!!!!
葛文星  河南省焦作市博爱县月山镇政府  邮编:454450 % }- o- J. H9 ^! D

3 r9 G$ o' E- V8 N要:数学家对尺规作图开立方根的探索延续了好久了,解决这个问题有利于提出新的研究思路。有利于解决一大堆数学问题
关键词内切圆  圆相交相交弦定理9 i4 H; k# J6 E

; O) i  G- d" @5 Y( _言:尺规作图开立方根在国际数学理论中已经被数学界所否定,而在内切圆的研究方面是从来没有过的。这一问题的解决带来的不仅是一个新的开立方定理的诞生,同时也是新的数学思想的延续!在以下的说明中,如有不理解的可以打我的手机号和我联系,我将近我所能解答您的提问。这是我十年来的努力成果,我的联系方式是15893067785  或者0391—8058804
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-30845.png
(图1)
做法:1、在直线L上取线段AH   
      2、以线段AH为直径做圆o1   圆心为o1
      3、做o1J垂直于AH,连接JH
      4、在线段AH上取任意长度线段EH  EH<AH
      5、以线段EH做圆o2,圆o2与JH相交于点I
      6、连接EI并延伸与圆o1相交于点D
      7、从点D做直线垂直于AH,与AH交于G点,与圆o1交于另一点F
结论:DG=EG、file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-23432.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-4244.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-29851.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-9710.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-1258.png
5 d( Y) x* V& i" h( B5 `
得出  file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-11657.png- G' g0 A9 c6 Y2 X" J4 l% f
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-18344.png
设AG=1 则有file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-20296.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-16545.png
(图2
如图2所示  b=BG  d=GK  根据相交弦定理  可得 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-30041.png
由  b=BG  d=GK   , file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6296.png   可推出 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6039.png
1 W$ t3 f8 @% R" d& ~$ ]- o
当AG=1 时  file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6548.png
设我们要开任意数x 的立方根(x>0),当x>1时,取file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-11040.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-12968.png。在开出d的立方根DG后,取DG的倒数,既可以得到x的立方根。
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-8056.png
(图3
如图3所示
已知 GF=a  BG=b  GH=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-26368.png
" N* i9 U3 D: r% s$ d0 J
根据园相交弦定理AB*BC=DB*BF
因为DB=GF-BG,BF=GF+BG,AB=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-24049.png  , BC=AC-AB=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-27183.png
+ u) X2 ^, I4 O" ?% i4 K3 n
GF=a , BG=b  ,GH=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-9525.png
+ u& G; u5 m1 h, P
故有
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-31763.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-10779.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-26833.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-28721.png
有图2中的推论file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-30134.png& h$ G5 y" |# S  O1 a8 s  A& H
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-8106.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-2550.png
由图1,图2 得知  file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-2951.png   因此file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6826.png  为开立方根公式
根据相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等,我们可以得到file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-29233.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-23418.png的具体长度,所以我们可以得到d的立方根a.
案例如图4所示  我们可以得到file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-5102.png 以AG为1时  file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-470.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-21959.png的具体长度  因此开立方根公式的右边全部为已知长度,右边所涉及的作图方法均为尺规作图可做到的方法。所以结论即为尺规开立方根可行!
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-5799.png
(图4)
做法:1、做AL=BG
      2、过点L、G、B做圆o3
      3、延长直线BA与圆o3相交于点M
结论  AM*AB=AL*AG file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-7392.png AM=file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-29407.png  在同一次开立方根中  AG设为1
故有   file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-11600.png
- Z. S4 |9 g6 L7 V) H. [$ m, T
以此类推  我们可以得到 file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-9568.png的具体长度。
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-28923.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-13562.png
至此,所有尺规作图开立方根全部结束,以上所有理论依据均可在初中级数学教科书中找到
    以上是关于尺规作图开立方根的研究,以下是研究的推演和相交弦定理不成立的公式证明!
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-28158.png
1
根据圆相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
在图1中有     O& G$ j5 ~* v8 V1 E3 j
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-1950.png) E- a; S8 W/ q$ e6 K
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-12711.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-16382.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-23575.png! C- j6 O& ]0 w- f1 w# ~7 \
DG=EG、file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-11553.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6649.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-958.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-1272.png( c6 X; i& i& ~
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-5983.png$ B4 \9 x7 i: y9 ]
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-26839.png
1 s, V& T2 K! \5 y+ tfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-14741.png
. S# R. Z) c* K# S# z- S6 b1 Hfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-6746.png
$ k/ E6 L. p/ b0 a8 \
得出  file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-22465.png- X" M( a- G6 O' Y% p6 x& C' W
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-13917.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-29762.png
( w0 y! ], D+ @$ L& A! ]file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-4820.png/ m! t- c5 j0 o
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-15886.png+ B4 ^- Z" @. }5 o# n2 ?; i" e# j
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-14464.png
推出file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-25078.png) U7 |, l0 x- L3 X3 B/ H" Y# V2 z, v
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-13217.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-19239.png
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-15089.png因为file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-29868.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-26532.pngfile:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-15350.png   所以有
file:///C:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/ksohtml/wps_clip_image-20036.png
我们可以看到根据圆的相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。推导出的工商其最后的结论却是这样一个结果。那么这证明了什么呢?我觉得这就证明了相交弦定理是错的!
! D! b0 v7 X1 Z- u# X

作者: yyxcgwxok    时间: 2011-2-17 20:44
  你说的有道理  赞一个!
作者: 数学1+1    时间: 2013-12-30 20:02
葛文星先生:
/ K: F8 d, L2 S      你认为根据你的研究,你否证了相交弦定理。你知道吗?如果相交弦定理能否证,则数学的公理系统即被推翻。而数学的公理系统是兼容的。




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5