数学建模社区-数学中国

标题: 实二次域(5/50)例2 [打印本页]

作者: lilianjie    时间: 2012-1-4 14:05
标题: 实二次域(5/50)例2
本帖最后由 lilianjie 于 2012-1-4 17:59 编辑
0 g9 x1 ^% f8 Q2 C4 \: @$ u4 D0 q. ]
- ?# q" `$ z# h1 M% {' c7 T( U: lQ5:=QuadraticField(5) ;! }2 O  w% O( T  f3 V1 _4 E
Q5;5 s8 U7 E9 }( j* n$ T4 F/ g
Q<w> :=PolynomialRing(Q5);Q;
7 w$ F  q, `5 G: O: n9 i: v) w
, C7 T  l# Q# V0 G: dEquationOrder(Q5);1 B9 e/ T( Q( f) t+ V0 Y
M:=MaximalOrder(Q5) ;
' @( D' y% {6 F3 _M;- Z  Z  ?; I6 \9 E/ e. l
NumberField(M);4 `6 f+ k: U3 v# T' L* i& `
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;' L" w. b0 h1 A' [- D6 i
IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);6 p- [$ A, C+ |# s
Factorization(w^2-3);) H" e6 Q# P* z# o% i# |" E" N
Discriminant(Q5) ;2 Y5 y  |# S: ~) q
FundamentalUnit(Q5) ;
% p) j4 I( \" AFundamentalUnit(M);
  [1 Q7 x& B& O; [* M7 WConductor(Q5) ;
+ X6 j9 Y9 g" C  ]; P' A/ A5 C* gName(Q5, 1);
6 P  D8 c3 C/ q( pName(M, 1);/ ]! F: O% E# g" X6 f8 _
Conductor(M);
8 f" [. \# [  g5 O4 \ClassGroup(Q5) ;
5 _# @$ u6 W4 @ClassGroup(M);% H% X5 |' h/ d2 x) Q
ClassNumber(Q5) ;
9 m5 H4 l0 s3 a# c/ j. s/ JClassNumber(M) ;: D  d; F0 a6 P/ q5 z. N3 U* v3 {
: Z8 a2 e( C9 S0 d2 e% W0 c
PicardGroup(M) ;: X/ P) u8 n2 w4 [
PicardNumber(M) ;7 a' }7 o% }  F8 ^1 N* g3 v; P  I' J
% U" q3 h- k& f5 F. s

9 }6 r' M+ F3 M' f7 sQuadraticClassGroupTwoPart(Q5);
! \3 V( Q* y4 A' uQuadraticClassGroupTwoPart(M);
# G( I' x" I# o/ a: m5 W( }' ]4 N. }% i& V$ N, e" p2 q) N

6 y4 z2 {+ y2 J+ M8 R4 \5 qNormEquation(Q5, 5) ;1 k0 X, u, N2 P2 @
NormEquation(M, 5) ;( g" s$ f1 ~) u6 ?. Z9 P
2 j+ p: [, d+ M8 _9 B5 N% A2 `1 I

" t9 I' n; F5 t, T" W% f  L2 YQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field# r. n# d  G! H& q$ }' z( b
Univariate Polynomial Ring in w over Q5! y9 b. Y0 m% V
Equation Order of conductor 2 in Q5
5 x  [5 `6 C) C- ]# I4 q6 QMaximal Order of Q5
( [, j* h& s8 b% A' E7 ]Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
" v% B4 D1 ~  IOrder of conductor 625888888 in Q5
' z* G( N* r% Z6 O3 \0 N0 P" k3 \5 Ttrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
( ?$ \2 k! M: W; M9 K. _true Maximal Order of Q5/ S' Q1 ?5 p+ W" G$ D, |
true Order of conductor 16 in Q58 T$ a7 B# A, d% S8 G$ T
true Order of conductor 625 in Q5
7 e8 |- }  d& z5 c; K- o5 O4 wtrue Order of conductor 391736900121876544 in Q5& r% V7 T: q% n- H& D! ~
[1 ]" C+ f1 o% I( C
    <w^2 - 3, 1>7 l. y7 R$ h: p$ u
]
. H1 n% w, T) ]- |# [54 v; |" x' l  h% e6 j+ d# c
1/2*(-Q5.1 + 1)1 @2 ^- Q" H4 Z: f9 G9 K
-$.2 + 1
& Y( ~, S1 o9 J; Y0 Q! G5
- L! q2 s0 W8 Q3 yQ5.1  Z9 Z$ P4 q. w5 \3 K: l
$.2
. W0 B- j9 f3 G$ ^8 Y1
, F6 v  T, K, M5 F# Z+ _1 d2 SAbelian Group of order 17 z5 J. `& c& I! F
Mapping from: Abelian Group of order 1 to Set of ideals of M
2 o: T+ L+ A/ X5 iAbelian Group of order 1: g1 t# w- S$ H$ d
Mapping from: Abelian Group of order 1 to Set of ideals of M" T! e& O0 o+ i2 k& c
1
! a$ u9 b1 ~5 @+ U/ [: Z( @5 C$ X1; Q# }: d% r' G4 f
Abelian Group of order 1
# \/ k( \3 n# WMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no! `1 I9 [& I2 [6 t
inverse]3 o/ i/ b( @) U" ?& s
1, b6 t( u" F0 t6 }7 i6 x
Abelian Group of order 1
! e2 f- Y0 G) lMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant. ^3 u: G5 b& H
5 given by a rule [no inverse]& g& t. B' Q! A1 r$ ^- @
Abelian Group of order 1
. o( r: L  \; o# c$ HMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant9 \0 X6 x4 E1 l2 o
5 given by a rule [no inverse]
: g; V( V2 P% ^/ ]. ztrue [ 1/2*(Q5.1 + 5) ]
: L- B7 |7 U/ f* @7 w$ ytrue [ -2*$.2 + 1 ]# \0 v& T; n' U/ L3 j4 f9 a
$ e6 s/ |* C* T) }
# G8 T( l5 ]& O+ Y

3 q, y: S6 I) m- V$ Y
$ z4 X6 O. I3 `. z+ P* q2 h% U" f$ p6 q( Z+ G" X( u1 }
+ B- @& m5 z3 X* _. a0 ^

$ Y, b# E/ [9 S; q7 H" g! G! J$ J) n  b- V$ P3 t: m
& ~  ^8 A+ B4 n0 J

0 Y- S% B7 a; {0 z# d8 l  u+ T- o* W  l3 _
==============* z" ]- p/ {9 S4 H3 p7 `# G
( `+ u  l* v6 |9 s1 E2 X" ]2 V% Z) Q
Q5:=QuadraticField(50) ;
+ h  {. V) |& o( nQ5;. L/ E- \3 x8 _9 p" h

5 g% V! y! O' f; M& S& O2 UQ<w> :=PolynomialRing(Q5);Q;( f- _& P7 w3 h& U. _
EquationOrder(Q5);$ `+ Q' |4 j0 d
M:=MaximalOrder(Q5) ;
" B; K. h5 z! b3 sM;
- v. @" E5 A2 pNumberField(M);" ]& x5 e; ^8 \% j
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
8 d, e# z0 ]0 _1 ]* ^( {IsQuadratic(Q5);
& A" V* q. A. i" i4 x( ~IsQuadratic(S1);
) u3 v' ^9 D& ]7 V  Y, @% qIsQuadratic(S4);6 |* P) p& Z7 x$ t
IsQuadratic(S25);& c6 c: I' h7 [
IsQuadratic(S625888888);
; `; \& f& l& J3 m, e  l5 JFactorization(w^2-50);  
  j. M4 b) W: `" cDiscriminant(Q5) ;
, a  p3 _( e8 Y& x" ?$ oFundamentalUnit(Q5) ;5 [" b; \: ?- O+ y1 V  i
FundamentalUnit(M);
& q+ a4 G  t5 I0 z9 JConductor(Q5) ;
! E7 C( W4 ~+ y  B+ }) s" X  k7 F" ^8 G
Name(M, 50);2 {3 M+ R+ y! u6 K4 S
Conductor(M);
$ g7 R" V# o2 I# h4 ~ClassGroup(Q5) ; * c: c5 J: }! O0 U
ClassGroup(M);
& N/ M6 ^9 |7 q$ |# m0 |9 W) d3 Z/ HClassNumber(Q5) ;
* T; M0 h: n' ?% n# _6 o! q, LClassNumber(M) ;( ~& ]! I7 b8 I3 ]
PicardGroup(M) ;
3 T* [! R) s+ X/ g: @* o% [PicardNumber(M) ;. F3 D- A1 M% e4 D

* R" t( \4 Q; {3 m  s4 I" }% QQuadraticClassGroupTwoPart(Q5);
+ j' M# b0 G' `! x' X2 SQuadraticClassGroupTwoPart(M);
, o( c# `8 q; m$ W9 ?5 sNormEquation(Q5, 50) ;
! l1 V) n1 j) b: S; B% F9 l+ ^# Y* VNormEquation(M, 50) ;
- b: \2 d. O: l/ [  F+ m. @$ q1 A$ \8 P% r. k6 C8 Z
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
2 c& A9 c. m7 M7 t; |Univariate Polynomial Ring in w over Q5- ]- |8 ?- @6 Y: z% f
Equation Order of conductor 1 in Q5; n; }3 s' |4 U- a
Maximal Equation Order of Q5
3 l/ G. A$ W  J6 t8 HQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field6 j5 A+ _, g  ]0 B8 H
Order of conductor 625888888 in Q56 s- \* P$ y( ?
true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field0 {3 x0 V% N, u2 m' ?8 W
true Maximal Equation Order of Q5' p# ^& k- @& u3 K: q' h: e
true Order of conductor 1 in Q5
; G3 P! x: ~7 L0 u" m/ X/ A( T( Ttrue Order of conductor 1 in Q5
" f4 z: ~. m: utrue Order of conductor 1 in Q5
$ I) S: n( Y+ x0 g3 g( v[
+ B) W% a1 p0 m9 ?' n% s+ r    <w - 5*Q5.1, 1>,
3 ]+ x7 Z2 m& i) \, ?    <w + 5*Q5.1, 1>
- D  V4 W' a$ m  y* k1 T]! h- w. L. `5 C$ I  T
8
1 j! E/ o& Y2 J+ t9 SQ5.1 + 1
+ s. p8 R! u! B- n+ P4 F: a, c- N$.2 + 17 U  P2 N) c. h, y# q/ K$ t9 P4 C" V! L
8! j, R! s8 H5 v1 G' D9 V

6 r0 V8 h4 d* L" b4 U* W>> Name(M, 50);
9 o* w0 d7 b- O& d       ^9 \! o$ X( p! Q# O6 {& V
Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]4 Z& Q! @2 w6 z: X: U

9 t6 Z7 p4 A3 T" H  Z; a1  y* k) W8 H4 B0 c5 u0 T: M- `, Z
Abelian Group of order 1
- y* a( A/ j9 G, h* Y, o' S+ XMapping from: Abelian Group of order 1 to Set of ideals of M4 t8 Q0 C5 v% r
Abelian Group of order 1
; G$ a8 m1 h" F1 ]# T. wMapping from: Abelian Group of order 1 to Set of ideals of M
0 \$ E+ e' q9 z" T2 N/ W7 l! k1
8 K* b5 |. N& P8 ~1
" x- ?! C: W1 ~2 [Abelian Group of order 1
" ?! G* r2 Z( o9 ~Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no7 ^) {& c. a0 M  i
inverse]
# E  f7 t2 |; t+ Y8 b; C1
7 v9 Z: F, [& M6 ^/ C( kAbelian Group of order 12 L$ }5 A# r/ V, }% G4 \3 }
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
+ y$ H, x8 V$ a- X8 given by a rule [no inverse]2 L6 l. g1 P/ J4 l7 R* w" s
Abelian Group of order 1: ^/ ], J7 d% K. e8 E
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
$ Y  ~$ g  e, H8 given by a rule [no inverse]! n6 o6 Q$ n- c' N( g: p8 A. e* x
true [ 5*Q5.1 + 10 ]
' W4 g0 b' V" A; B8 Y2 A: }true [ -5*$.2 ]
作者: lilianjie    时间: 2012-1-4 18:00
二次域上的分歧理论

1.JPG (177.16 KB, 下载次数: 287)

1.JPG


作者: lilianjie    时间: 2012-1-4 18:31
本帖最后由 lilianjie 于 2012-1-5 12:42 编辑 ' l9 [% y8 B0 m5 G9 M( G5 b
& q* |5 N* f" v- H% J2 R, r0 G
基本单位计算fundamentalunit :) ~; R7 N) i, C2 A
5 mod4 =1                                              50 mod 4=25 ?, ~6 @) S7 b* a7 I4 ?5 s3 n6 l8 @: K
$ D) E9 R% ^  S% [) A# c! z, j# Q4 J( {
x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.3 |2 K( F* Y6 C
x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.
, ?6 B4 s6 d6 }/ d% J
4 |6 s& o( M2 A2 S1 }8 p8 R  l
( ]0 ?" d7 M- R最小整解(±2,±1)                              最小整解(±7,±1)
8 R2 W/ Y" t4 ?3 R. ^3 U' n. Q                                                             ±7 MOD2=1
. g$ O! S8 ?! G+ @9 s5 ~8 a7 ]/ K; I8 X
两个基本单位:

11.JPG (3.19 KB, 下载次数: 273)

11.JPG


作者: lilianjie1    时间: 2012-1-4 18:53
lilianjie 发表于 2012-1-4 18:31 4 G1 x. h/ u7 S! j* k9 b
基本单位fundamentalunit :( ^( I: C7 a8 J9 w: Y
5 mod4 =1                              50 mod 4=2

; x; e1 S/ F8 Q: o* X" M4 f1 Z/ W$ I基本单位fundamentalunit

3.JPG (105.07 KB, 下载次数: 266)

3.JPG

2.JPG (140.29 KB, 下载次数: 272)

2.JPG

1.JPG (193.2 KB, 下载次数: 270)

1.JPG


作者: lilianjie1    时间: 2012-1-4 19:07
本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑
1 Z. \5 H6 H! C1 A+ ^6 O' C& K
- H3 X# y& n0 [( h1 G) \2 D判别式计算Discriminant
- P! W+ C7 J- v7 G  {& _8 \  \1 I. R# C+ `$ N0 j
5MOD 4=1
) S. t- y1 H5 k5 V0 ~. R8 r/ f; \* `
(1+1)/2=1          (1-1)/2=0/ q3 k9 a& Y8 H
8 v7 D. t7 B) h  c6 d
D=57 m8 U; Y! J0 M/ I: h% I4 z
: u1 Y0 R$ o4 O1 B# X3 w% g0 p

8 R& b$ c9 o, f7 a: `( S50MOD 4=2, j5 d( `( P/ Z. `* [
D=2*4=8

33.JPG (165.31 KB, 下载次数: 263)

33.JPG

22.JPG (137.12 KB, 下载次数: 254)

22.JPG

11.JPG (163.36 KB, 下载次数: 294)

11.JPG


作者: 孤寂冷逍遥    时间: 2012-1-5 08:37

作者: lilianjie    时间: 2012-1-10 17:49
lilianjie 发表于 2012-1-9 20:44 ; C- i# M( ]8 {0 {7 }" V' g. h* f
0 L' x4 b1 }3 N3 E4 y) y  D8 \
分圆多项式总是原多项式因子:
5 a4 g8 L0 U! c1 w9 M# Q) wC:=CyclotomicField(5);C;7 y" T- m+ g3 V4 X4 O, U) T
CyclotomicPolynomial(5);
9 }. Y3 A4 x: K4 N: {0 Q' B

( H: t0 i* V$ {4 L1 T9 j; O7 y' Q分圆域:& }  U- ~" z8 y
分圆域:123
! w  E6 Y" P# q: K5 l
- W$ N8 Z/ p) |3 ]4 @( k1 ]R.<x> = Q[]( f' Q! u* p8 t1 p! g) `5 k/ B
F8 = factor(x^8 - 1)$ R6 F5 A9 J: n
F8
# K3 I+ m* x+ J/ ]/ u' F: W$ t& k% K' F8 s/ z
(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) 8 e. `! n# C4 m$ l

% P2 i- K" |8 IQ<x> := QuadraticField(8);Q;5 o) O6 W. X7 p. T# y
C:=CyclotomicField(8);C;
) X/ R; h& z, p. O& ^FF:=CyclotomicPolynomial(8);FF;4 a8 w2 t7 s! r4 K, k1 f
1 R7 @2 P5 }/ `1 D7 l
F := QuadraticField(8);
: v# J6 w+ \. U% T: M) H5 kF;; ?. a6 R0 X$ s6 E
D:=Factorization(FF) ;D;
% ]: z* \( e) NQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field1 S( P1 m! D: \
Cyclotomic Field of order 8 and degree 4! N" ]+ N0 N- h# E- q; ]& B3 k
$.1^4 + 1/ c  u. J# e  S
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field/ j4 |. \4 f! o. u. f  I5 u
[9 F- {. P# l. Z2 i4 _
    <$.1^4 + 1, 1>
# q! E6 R, `3 M! r]
' Z* p9 N0 |8 M4 h' A0 M. q0 k' R5 R+ p, V/ Q2 S) |7 Y' z7 }: ?
R.<x> = QQ[]: w% M7 @$ \2 G* ]- M8 C
F6 = factor(x^6 - 1)
) j+ ^5 M! |) S6 l# ~3 f; M& b' lF6
. {; k6 T; O$ Y; A
( S3 v- g$ t1 o3 m% f(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) / i8 U6 T8 M3 h7 p# M9 H8 N

% f5 c: L! w0 B' p  `Q<x> := QuadraticField(6);Q;  _+ j9 ^! F) O4 t4 F# J8 U
C:=CyclotomicField(6);C;
" E+ g+ T7 u- s* rFF:=CyclotomicPolynomial(6);FF;
& d; S4 Q2 E0 U8 m% \
, A8 Y- K3 Z. \F := QuadraticField(6);
" X9 ~! K5 T3 J# @! GF;
' |$ i6 X) `6 I# }) wD:=Factorization(FF) ;D;
! g( B) t! X( S/ T* i4 zQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field) t2 H* r* V7 {+ M( {3 t2 W4 C4 L0 R9 m
Cyclotomic Field of order 6 and degree 2
5 R$ I9 u5 }: W; X. O+ |: F) ^0 R$.1^2 - $.1 + 10 A. g  C  L2 u+ \' H( [
Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field; `# S3 j( K! G& I: s. p8 G6 J
[
4 j3 Y) z: O6 e! m    <$.1^2 - $.1 + 1, 1>- ]3 o+ t! u3 e4 T5 H% E& g- R
]
0 i' X3 f3 _% D2 S6 }
, F2 F% e' R5 P2 v# Y# Q% IR.<x> = QQ[]; Q1 M" V- u9 Z9 b8 l9 ?9 S. _
F5 = factor(x^10 - 1)0 {! d- x8 B5 o: E
F5( c5 h2 s5 S7 K. c& d4 |
(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
! F1 c& n# q8 ^/ ^2 Q/ x  C1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)& T  |+ t, b% B! J5 t, ]3 d! c

4 T! B0 |1 U0 w- Y8 b0 O8 kQ<x> := QuadraticField(10);Q;
9 m4 z) e7 D' v2 w! tC:=CyclotomicField(10);C;
7 I/ j9 o2 ]: t; r3 _7 V1 c5 @; m7 lFF:=CyclotomicPolynomial(10);FF;! v$ X9 r6 I6 k7 t- {$ W

) [! O; E) Z( \F := QuadraticField(10);
0 V8 D9 [9 A0 R; XF;
' [7 s: T: Y8 S& @0 _4 e  v+ vD:=Factorization(FF) ;D;! t5 B7 v( o, W
Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
! x) J# ]( Y; [" ?! ZCyclotomic Field of order 10 and degree 4& }. [. j8 C9 Y( V* v, P( n
$.1^4 - $.1^3 + $.1^2 - $.1 + 1
! d9 |6 D( ~4 J% m4 [: QQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
" F, `9 M$ |6 }6 J% R- t8 ^[1 J# ^7 b5 R9 `# }( L+ ?
    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
# U$ b9 I# |7 ]( l, p0 D% N* \0 |* `]




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5