数学建模社区-数学中国

标题: 虚二次域例两(-5/50) [打印本页]

作者: lilianjie    时间: 2012-1-4 17:41
标题: 虚二次域例两(-5/50)
本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 5 d# w& R  E2 S# {0 E! [$ }- b

- I4 o) y) N" eQ5:=QuadraticField(-5) ;1 |# N. c# z8 S! d: _
Q5;
( ^& t5 r. l' |, Z  ]% Q/ ]& L/ ?( K, R
Q<w> :=PolynomialRing(Q5);Q;
( @9 ]( M2 R! k  ?  }6 R  `5 QEquationOrder(Q5);- w, S: ~/ A2 ?1 w8 @) b, f
M:=MaximalOrder(Q5) ;
1 w" `7 F* }! a' l& n7 [5 R, V% LM;
# r2 {& E! q# n- L. I( Q9 ANumberField(M);
, y, a2 e7 ^5 aS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
: ?' u' F6 g4 k! g" e, JIsQuadratic(Q5);% J! S' O2 V- x- u0 Z* ]8 b5 o  f2 }# f
IsQuadratic(S1);
$ Z, V" e, {# h; sIsQuadratic(S4);: q6 m5 Z$ a& @4 w5 J
IsQuadratic(S25);
: k1 o3 y  T& w7 gIsQuadratic(S625888888);
9 l2 G, z- U1 P& A3 gFactorization(w^2+5);  
6 v" K6 b5 k. L0 K1 F- n+ h+ B6 B8 ?8 S, \Discriminant(Q5) ;
8 X. s  n4 t0 l- zFundamentalUnit(Q5) ;; _- Z# V5 w1 f8 r5 X" i
FundamentalUnit(M);: H  ~# P3 W% k$ y& _, P5 J+ L$ r
Conductor(Q5) ;5 h, N/ y7 q" o1 Z9 ^
" h4 _9 {1 b# P! k6 ?& R7 O
Name(M, -5);
1 N9 I4 }$ z: y$ Y0 G. gConductor(M);
; I; o) ]" F! {& R! LClassGroup(Q5) ; * n  e: @# ^- A
ClassGroup(M);
  j7 L" _4 \  u9 i0 b- S* sClassNumber(Q5) ;3 D4 ]+ |* @: M( a5 B1 U
ClassNumber(M) ;
! h% {2 U) `  i; a' dPicardGroup(M) ;% ]6 @6 S. N$ M
PicardNumber(M) ;
6 h, k; f0 M/ ^, A2 K6 H% ~& v- K4 o* j" y
QuadraticClassGroupTwoPart(Q5);/ J1 P0 I+ C* T2 e/ o$ J
QuadraticClassGroupTwoPart(M);; [' ?7 A, f: ^; j5 A" T
NormEquation(Q5, -5) ;, v. h1 P8 S/ y& |3 J, G, Y
NormEquation(M, -5) ;$ c# }( o: I7 u. L1 w; U, A5 d
Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field$ w$ {: b2 O3 u& y& `9 R
Univariate Polynomial Ring in w over Q5
  b; f8 t# z; `' j$ |+ W2 WEquation Order of conductor 1 in Q5
- j+ J# j; ]- r  AMaximal Equation Order of Q5
( o# e& w0 R! j( b3 U! JQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
2 R1 t" j/ A% I3 R! |Order of conductor 625888888 in Q5: }9 k  F* i; `  `* v0 Q1 G0 F
true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
6 F" ?+ q" [: |' Z8 strue Maximal Equation Order of Q59 _& s( v, U. ~0 z( n: @- Z
true Order of conductor 1 in Q5
$ {/ v& _% m% K& o! D" K& u7 M- ktrue Order of conductor 1 in Q5
1 z/ r; b$ c4 Jtrue Order of conductor 1 in Q59 ]" f- E# i/ E* [, t5 r9 }6 Z" m9 q! N
[
/ v3 l. ^+ \! W$ s5 @9 [    <w - Q5.1, 1>,0 G2 i( X( ?- n
    <w + Q5.1, 1>3 p/ B' n2 i6 W3 Z$ F
]1 m& _% {1 F7 _! F7 e8 v
-20: q( y" H+ e! b' n8 g" [4 R$ |2 o
  _% v0 j1 H# h
>> FundamentalUnit(Q5) ;
! q, p$ J" t% X% m6 n& C* c                  ^, d! R! X% `! `( x( i
Runtime error in 'FundamentalUnit': Field must have positive discriminant( v; P4 c- P! ~
4 l# d7 T* X' V

4 A$ q  I0 I% U3 B# W# ], Y2 l>> FundamentalUnit(M);+ M$ P! Z- `# A% r' J' x' K+ Y
                  ^7 w% t' V8 }9 U2 D
Runtime error in 'FundamentalUnit': Field must have positive discriminant% d/ W( N; c$ f+ T/ Q5 l0 ]

) S! E; K" P% c, t, P20. q5 \4 G# H3 e1 y/ w
: D/ W6 q; o4 _1 F. t; _! c: q4 S
>> Name(M, -5);
/ s" v, l0 n( N/ B' g       ^
% ~. O& N! Y. D3 _$ W9 aRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]& H7 \) v$ I3 N5 u# b

$ C3 e* O) D1 G1' Q0 J6 @( \- p2 U3 ?% \
Abelian Group isomorphic to Z/23 @) M9 a* F1 M; Z4 L5 y& t
Defined on 1 generator
* c; F" V* @% x( c4 r. _+ `Relations:
7 f: A- {; c+ \# K4 H, s    2*$.1 = 0
7 v, \6 I# |* C$ ], D- R- F7 eMapping from: Abelian Group isomorphic to Z/2
9 N5 Q1 l. \8 n& z! ?1 K! XDefined on 1 generator, \: l1 |  o) i; X1 n' \4 Y1 ~" _
Relations:& ?, ^) e, Y0 \3 a0 v# |( B
    2*$.1 = 0 to Set of ideals of M
/ j7 A5 i8 a' g! G' y2 |Abelian Group isomorphic to Z/2
$ n1 n- u2 n! s& qDefined on 1 generator
( a1 Y3 d# i# {, U3 yRelations:
# z0 i: z5 B7 j3 {& y5 t2 d    2*$.1 = 0
/ u9 Y6 O# @9 p. Y( @' z. B5 tMapping from: Abelian Group isomorphic to Z/28 `* B* z! z3 e: p
Defined on 1 generator
3 E( S0 @/ v3 k. k; C* m( YRelations:9 R& m  p( D% r4 }
    2*$.1 = 0 to Set of ideals of M
. I7 D% W9 A( c$ a* B% ~4 f2; w* h0 C' ]- t$ F
2
; f/ c4 ]: @7 `" J7 X% s4 A0 VAbelian Group isomorphic to Z/2
" K  {  T* U' h# c; {7 oDefined on 1 generator0 G( W+ }" |3 Z/ O3 R
Relations:
- }" k; H. [2 e) I0 t( r    2*$.1 = 0
. U% a" g7 X& T  w0 ]Mapping from: Abelian Group isomorphic to Z/2/ `  ?, J6 L/ M) v; d9 n
Defined on 1 generator
+ X" d/ D3 D# f" xRelations:* `3 ^8 Z, f! D0 j: x, a
    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]3 K  p0 B: g2 {" y$ M
2
$ v+ a2 Q5 \# S0 P" y# YAbelian Group isomorphic to Z/2% x( s+ J" S9 h0 ~, H1 f
Defined on 1 generator
* [& b+ {, D. r0 u# \' |* ~3 ERelations:
$ x" y1 k( E' q  [# u; o+ K    2*$.1 = 0
! d/ ^1 e( k1 E- VMapping from: Abelian Group isomorphic to Z/20 y/ m4 L6 d# G# \
Defined on 1 generator- O1 ]- k0 q' O: p4 Z: l. }# u( v! z
Relations:
9 U$ m8 z' ?% _) Z    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
6 W0 B! g5 F0 X9 L0 @- u9 N) ninverse]
4 |1 U. A6 r- u% ]) H( s. HAbelian Group isomorphic to Z/25 @) J8 y1 x! ]' t3 S! x8 ], N
Defined on 1 generator; {' f& z4 Z1 ?- D
Relations:$ f2 C8 w. r* `
    2*$.1 = 0
  m, ], B4 ^/ h" a+ s' o4 \Mapping from: Abelian Group isomorphic to Z/2
6 ^+ G, Y0 {% N# {  {7 Q. mDefined on 1 generator
+ J( X7 Z( G9 f/ m, m9 |7 R2 LRelations:
; t, n0 A1 ^" k' @2 C2 _" |3 r    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
' k( v0 g8 K! T/ einverse]" n* d; P# _$ S7 m) W" w+ k
false3 {  R; u5 I6 d) D$ q& X: \
false
, K2 _+ b" z% F6 M==============$ U, v+ s/ k, T/ H7 d  I' x! P

4 O  E5 X/ `  l+ w
/ b2 Y5 }: f5 X, _' m4 MQ5:=QuadraticField(-50) ;
4 R; f2 I' X1 P& |7 I- Z+ NQ5;; ]0 l6 M" O! k6 z+ U; D& ~
+ y  }5 W" z- c8 o. e5 r# U
Q<w> :=PolynomialRing(Q5);Q;
- |7 B1 ]+ g8 ]2 e. H- ]0 e3 J" u  cEquationOrder(Q5);8 J1 V( Z+ a2 r
M:=MaximalOrder(Q5) ;
- ?: H/ z$ W7 S: eM;, l7 b$ z" g5 G2 e+ k: i. o: o) Z! U
NumberField(M);* b3 v2 O$ }) h) a, n2 M
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
' X) Y6 j$ Z% D: @IsQuadratic(Q5);
$ J" n4 d/ h8 K6 H  GIsQuadratic(S1);! p! q- c8 `0 y( a
IsQuadratic(S4);
  ?/ n7 X/ U/ h4 @8 N( _# wIsQuadratic(S25);# p7 u, c' B' o2 I% [9 h
IsQuadratic(S625888888);
$ K! |* G1 [7 U2 \7 ZFactorization(w^2+50);  ) i* T! o  Y1 u
Discriminant(Q5) ;, @+ K8 l3 n/ W4 _) ?
FundamentalUnit(Q5) ;1 g7 d; @+ r0 v# x% z
FundamentalUnit(M);. ~6 f* \* B$ R# Y
Conductor(Q5) ;( D9 P1 H$ x  d4 b+ ?
3 e6 P: O7 V+ r/ m
Name(M, -50);
( r3 L6 U  Q4 I9 D. X2 @Conductor(M);( B) o4 b- X5 u! R
ClassGroup(Q5) ;
/ v7 k1 |2 H, j( v+ N: z- PClassGroup(M);1 r! ~' [0 u1 p' z% T
ClassNumber(Q5) ;
1 x4 ], \4 u8 i% B+ UClassNumber(M) ;
4 [8 M& h/ X) I- VPicardGroup(M) ;$ V+ k9 x+ c1 d
PicardNumber(M) ;
3 J: a" t) j2 o$ p, D4 P
: q3 M3 W, A4 B6 gQuadraticClassGroupTwoPart(Q5);0 ]& J; k( J3 [2 S( b6 G8 E) l
QuadraticClassGroupTwoPart(M);
- f# n, L+ i* T( Y6 XNormEquation(Q5, -50) ;
. P/ ]  B, h0 T$ q5 GNormEquation(M, -50) ;9 i9 n4 o# r5 u

; F- `: }6 {+ zQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field; ^" a  c4 \! `0 ?. ^
Univariate Polynomial Ring in w over Q5
/ y6 m2 F/ v2 p# R& J' r/ OEquation Order of conductor 1 in Q5
' E- \/ v8 X# S4 N  dMaximal Equation Order of Q5' v9 v- r2 `. n( \* Z" m! F( m  N
Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
" X- s0 q) r# oOrder of conductor 625888888 in Q5- z+ M) C4 q' ~
true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
0 y" R  t6 S0 I% p% ~3 ]true Maximal Equation Order of Q5
( A9 D1 Z& Y' d" u$ g) B. P! atrue Order of conductor 1 in Q5
: o3 I8 ^0 N2 \8 Q4 t6 e4 Ltrue Order of conductor 1 in Q5
; E  G4 ~7 z6 A; b, utrue Order of conductor 1 in Q5
1 X2 k/ W$ R2 u$ p  e9 i5 m* E[8 V$ M2 O9 N9 g( C; p
    <w - 5*Q5.1, 1>,' q, z% \# t2 U
    <w + 5*Q5.1, 1>! m7 s/ B% r" R  D; Z/ J9 K; B
]. r( M: P* p. _  }% ^
-8
: i* E) R; D/ E7 V% }9 ]
* `; z+ p: p4 n- [+ K>> FundamentalUnit(Q5) ;" R. D) k4 C4 g+ E" h
                  ^
: b$ q& H* a7 PRuntime error in 'FundamentalUnit': Field must have positive discriminant
8 }, v7 A" `" B+ K; m  E3 H4 X7 \# U8 r9 Y' v0 i3 r

* N' J7 h% A$ ^0 o) n7 k>> FundamentalUnit(M);% ^) m9 s1 J& E8 X
                  ^
" q6 A0 r6 K  H, g% N4 C, qRuntime error in 'FundamentalUnit': Field must have positive discriminant3 r3 ?+ ]4 s$ k6 _6 a
/ X6 Z, g! Z% {* K& I3 Y
8
& E5 _4 h5 ]$ Z! Y; U
8 y& f9 X) @* E$ ]! ^>> Name(M, -50);
/ P; ]& K* {) j# N       ^
: ?/ A0 m. i: l4 n. yRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]
; E2 O* o8 f0 @8 s' s# m' d; j( v2 Q- q$ a! Y
1
, V1 q+ {; o8 P! CAbelian Group of order 1% H4 I) v' t0 J3 a! J
Mapping from: Abelian Group of order 1 to Set of ideals of M
9 s2 m/ U5 ~: s: G, W0 Q: qAbelian Group of order 1
' e" v$ p6 b, m' z5 b, b  R9 W/ LMapping from: Abelian Group of order 1 to Set of ideals of M) o" G1 q6 w6 v, E' ~8 K
1
9 m* |4 G$ ]) M% I0 a/ |19 w, X# A' l: N& a2 R  w3 H: U
Abelian Group of order 1, D- ]- w8 |, v* ~/ n! v2 T9 t& |
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no, m2 e+ d5 [( @2 L$ i7 j
inverse]
3 B( X" B& ]/ ?, L  V1
4 `$ `: g( y4 X" ~2 r1 ~Abelian Group of order 11 _4 h6 U4 e* ^( x* u" h
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
& S$ A# x' x9 M3 n  P-8 given by a rule [no inverse]
6 r4 @  C- [3 nAbelian Group of order 1
" L; `  r  K; k5 fMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
$ I+ `, {7 H9 Z2 q-8 given by a rule [no inverse]
& ~# K$ H/ r) Q8 D, o, }; ~false
; a( c( z0 v9 |* S, yfalse
" I# S8 s* v) u7 i* Z3 z) v5 A
作者: lilianjie    时间: 2012-1-4 17:51
看看-1.-3的两种:  }1 C8 H. X* k' m* F0 l: i4 P

# n0 C# K2 K9 E; U- g' }" AQ5:=QuadraticField(-1) ;/ n( p, P+ [& L' l+ b" J
Q5;
# j* F: T0 G+ Y# f. G" \5 a0 N: Q
) g' k: E0 O3 M( E: i$ T) \# Y% {Q<w> :=PolynomialRing(Q5);Q;
& Y% ^" |! ~. q4 |1 i( uEquationOrder(Q5);
& x" j' ~  |. M# {$ v3 SM:=MaximalOrder(Q5) ;* R$ o" s" [8 R$ ~7 q' I8 F
M;1 F! O+ k" o9 i9 ]; q0 A% j
NumberField(M);# Z* k3 c7 l$ Y+ J+ B
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
: \' v! P6 [4 J. T5 e. |IsQuadratic(Q5);
% `+ |* ~4 l& WIsQuadratic(S1);) H: ]  G( C) D& z  r0 C1 O
IsQuadratic(S4);
- C& Q0 k$ @7 W. P' V; @IsQuadratic(S25);( U+ N/ X$ w) E  Z* ?3 [
IsQuadratic(S625888888);3 h; V5 G8 j+ X) q8 S4 L6 f* F
Factorization(w^2+1);  * L9 `0 c: h3 m) K" x9 D! \
Discriminant(Q5) ;
" B4 G5 a! u2 B* R9 Z  Y5 G6 pFundamentalUnit(Q5) ;
& D5 N+ o- r0 D' s+ [FundamentalUnit(M);& X" s! ^5 m$ N8 u9 H( j+ g
Conductor(Q5) ;# F% r. u  F, X8 ?4 P! S
! z( x2 @! w9 l7 d
Name(M, -1);
; T* e: R6 ^, W5 ]- I& I; mConductor(M);# a* Y$ E# l  A7 o) n9 g4 Z
ClassGroup(Q5) ;
0 K5 W( l( ?6 CClassGroup(M);
) p- Q/ j$ |( K. VClassNumber(Q5) ;
) _/ W! F, x) t( c/ q8 ]7 d$ A7 pClassNumber(M) ;+ [/ M# v; \' v4 |( r$ N" T) }
PicardGroup(M) ;3 v7 d) C( b4 {# Z6 F. k: @
PicardNumber(M) ;
0 g1 s3 t( w9 k( N  u% \  ]
  ~" Z2 v' F, j  f: mQuadraticClassGroupTwoPart(Q5);. o% H/ U$ I4 ]
QuadraticClassGroupTwoPart(M);9 o1 E6 R: B) F) c; W) z8 f- O4 {
NormEquation(Q5, -1) ;8 s  u0 ^# R+ N, x" x
NormEquation(M, -1) ;
  H  a7 T/ G* I/ r/ c( F  F! A
) [8 e2 u: b' g$ z, JQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field, P6 r8 I2 `  \- Q9 N
Univariate Polynomial Ring in w over Q5
6 w4 O# ^" P$ Z6 S) EEquation Order of conductor 1 in Q5
" ?/ h, b/ v- t7 p7 x9 K* h9 RMaximal Equation Order of Q5% y8 t0 L# _, O9 {( k& v* Z* ?
Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
& ^/ s3 t" Q, H% Y: t: q& lOrder of conductor 625888888 in Q5
4 X, V; L" S: N9 a3 D8 F1 B4 Ytrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field( b2 G  D, A; M, u" F
true Maximal Equation Order of Q5
- I. _) N& U8 A" z/ T2 d. ]  a1 x  |true Order of conductor 1 in Q5! ]3 P0 w2 R* {9 t* P1 P
true Order of conductor 1 in Q5
' I8 s- Y) t2 @; p* {9 T$ otrue Order of conductor 1 in Q5
9 U7 w+ ^# s! p' z- P[
( g+ z; W7 d" I) ~* S7 A7 q! t7 k    <w - Q5.1, 1>,7 K9 t8 \$ l0 j4 `- `' c$ H
    <w + Q5.1, 1>
. k3 Q/ D* ?2 o) n$ ^3 P$ g]! g: D$ _3 n4 g/ y& M3 t
-4
# m% K# C) k( U9 j3 I9 u3 l/ @+ \. V6 q/ V9 M
>> FundamentalUnit(Q5) ;
* z! F  Y- r$ [# F, A& |                  ^
8 }+ t6 P" C+ ^. g" C( \* r8 dRuntime error in 'FundamentalUnit': Field must have positive discriminant' z( @* v3 ]8 l* b5 T
9 H% H$ m+ d" z1 Q

5 ?2 o8 s% K% p+ Z, C, ]1 J>> FundamentalUnit(M);7 K$ _7 G  }- m
                  ^
  V# s; |, P& w/ O6 JRuntime error in 'FundamentalUnit': Field must have positive discriminant' V* K) B( n3 d" E: L( d& Y5 S

" t$ v! E0 a4 Q& v  G) |49 m! a$ @; T0 L1 }+ B& ^
9 N, F! H; Q3 F; k1 U0 y2 K' E1 Z/ `5 L
>> Name(M, -1);% K7 E+ y/ \$ H! m) w
       ^
" ~0 _+ A2 Y$ x. p! TRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
* {+ R3 m" k. v3 E( z5 l
7 q2 X1 n1 R8 ^5 H) n# a1
1 H. c: E4 a, y) o( E% oAbelian Group of order 1* A/ m  x& f2 S: A
Mapping from: Abelian Group of order 1 to Set of ideals of M
9 v7 w% o' ]& g: C: ZAbelian Group of order 1
+ W* ]- }# h: U, H9 @Mapping from: Abelian Group of order 1 to Set of ideals of M
8 {. w5 O$ Y  C7 z1
# o2 {3 v! ]9 r  f. P& x1
: u$ o! S' K) _. OAbelian Group of order 1
1 ~6 K! p0 c! U5 N; n7 pMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
& Q7 E" `% p8 e* q7 U( f: a" Uinverse]
* H0 ]& P& z2 E/ ^1; S2 p7 x& H7 X, @
Abelian Group of order 1  V: `6 s! W5 R, j/ c
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant! i/ O& n8 @* N% w
-4 given by a rule [no inverse]3 M% P& ^. Q9 }6 |! Z; h
Abelian Group of order 1) h% C" i4 _' y9 ~7 X* E6 f* u
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant  K6 d4 \; M' V8 g& _
-4 given by a rule [no inverse]
8 ^/ e) t0 Q# c, ~, Jfalse1 B/ Z  u# B4 C" O
false
. \4 J5 F5 u+ W" ~- k. d0 H===============  c2 i" C' J: h) F: [
6 f8 W4 }3 T! l" A2 [! Q" W
Q5:=QuadraticField(-3) ;. g9 D- x4 M/ K" T! q# f9 r- X+ [- W# P
Q5;
9 }% l* ?, i% [& x. |" _
9 i. X6 l3 @  u" D9 S; WQ<w> :=PolynomialRing(Q5);Q;
& @: `% n8 W8 t' J  sEquationOrder(Q5);
+ j& H& m  R2 XM:=MaximalOrder(Q5) ;
) a2 f& U8 s7 R. e0 {M;
4 x/ w  w1 a6 }NumberField(M);) m0 h* ^5 I0 h! Y9 L% d1 R
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
( [9 p3 F+ R8 `; n: t: P; w7 OIsQuadratic(Q5);
. m1 G; n0 q. p* D. k) U  zIsQuadratic(S1);/ k) J) ^* b( @
IsQuadratic(S4);+ b, F! f' U  C0 I$ [" }- B
IsQuadratic(S25);
6 Z: J. b" s) Q2 ]! WIsQuadratic(S625888888);  z* C+ U& n7 U8 k) C- H
Factorization(w^2+3);  
; B# O% [" k, q6 s" X3 KDiscriminant(Q5) ;
" T/ f8 H2 P( B4 e' }FundamentalUnit(Q5) ;
6 I4 a: B$ \2 NFundamentalUnit(M);
  q: h4 n' x6 [) y4 [( o1 W( H: jConductor(Q5) ;: F" s) [7 D$ ^& A# S; f3 b# n

5 m! s) n, ~) P7 R5 B6 DName(M, -3);
) t! }* c  t5 S8 H6 bConductor(M);; |5 K2 t6 B! @' J* R4 ]# [
ClassGroup(Q5) ;
3 H- k* P: x' j3 T( z2 AClassGroup(M);
( w8 S. O) q8 _( u" sClassNumber(Q5) ;) X) D# J7 v% n. n, n7 E) K) j
ClassNumber(M) ;9 n7 }# k. j1 B/ N# j
PicardGroup(M) ;
1 q9 Q/ l5 ?2 @! f; OPicardNumber(M) ;1 z' }& n3 u0 ^4 u  p3 T
" [. D% O2 b1 E+ p5 v4 J! U; A' R1 _
QuadraticClassGroupTwoPart(Q5);
7 v1 v# e! Z8 ^' v* V5 B+ bQuadraticClassGroupTwoPart(M);/ f* g, E' T2 ?- c2 `
NormEquation(Q5, -3) ;; k) M, J0 _# y# j. m9 @
NormEquation(M, -3) ;
/ y0 a7 l) x' M  j+ v; Y- \+ K% w4 r6 g
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
0 G$ g" ]: {/ T) J9 fUnivariate Polynomial Ring in w over Q56 k2 F; y6 x' _4 I' U* z
Equation Order of conductor 2 in Q5) f# V4 N! }4 \% Z4 ?
Maximal Order of Q55 o! I% M  ~8 ^1 O; H0 x
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field' @) M! k2 Q) V* h% d, p5 u% ~; F7 _
Order of conductor 625888888 in Q5% \- z4 a3 V: k; C7 g
true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
* h3 c: t1 a, c7 Ptrue Maximal Order of Q5
# N7 _( U: G3 I& ~4 `true Order of conductor 16 in Q57 i* h$ u# Z. a6 L' H& P( H( b
true Order of conductor 625 in Q51 r& }/ h, w$ u4 r$ d# S
true Order of conductor 391736900121876544 in Q59 t7 a: U% L& P; ?$ P0 Q6 q
[3 `, |" g# [) f7 g: F" w6 Z; D; G% g
    <w - Q5.1, 1>,& @# S1 ]3 X3 r
    <w + Q5.1, 1>& n9 e8 [2 h7 U7 t( H2 S
]
% W( _: V% J5 p. a7 q2 O& @-3( `( ~5 S  q/ [

0 o5 C0 w3 ^  M3 f) z0 A>> FundamentalUnit(Q5) ;8 X* g7 L- X! ?' r7 `
                  ^! i+ C5 g- o/ ^' Y- `0 J
Runtime error in 'FundamentalUnit': Field must have positive discriminant* x9 t! I: x, |! G

! {' L7 G9 f- U3 Z. e$ ^9 J) m6 C2 g! L, |( h" v5 u
>> FundamentalUnit(M);$ N' A- ^# N) P; |
                  ^$ M! u) [7 e# d5 h1 Z+ L
Runtime error in 'FundamentalUnit': Field must have positive discriminant& H0 w6 j: a- Z1 ?

# U& T! I) _8 r* M3
( W6 u" e; t/ z, R( w1 E
1 v% v. s* U0 S9 D0 U# G8 _9 Q+ F* X>> Name(M, -3);$ v) f; @4 j& [, e9 E9 u- M
       ^" Q+ \, j% ], C0 ?+ T
Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1], ?3 P1 x' E+ t# v: z7 D0 l) N7 s

5 _' i1 d1 b8 e2 M5 @# |1
! C* J8 k( y" l+ l7 XAbelian Group of order 19 v4 i0 t2 k- M/ u& H* ]
Mapping from: Abelian Group of order 1 to Set of ideals of M3 b% I! {. C" n+ ?2 X6 R$ D) V
Abelian Group of order 1
# _" t  [; V8 w" G3 HMapping from: Abelian Group of order 1 to Set of ideals of M  }6 W' B4 s( r7 ~7 q
1; d2 E/ F  _4 c9 ^: V; s7 h3 S4 |
1' P% u. l  p# s
Abelian Group of order 1
( Y. N& O0 w  yMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no, ?; ^# P' p- @4 M8 b
inverse]
5 E4 }' ^; l9 a" b1 u1
2 p+ m2 M# p8 `7 }( r) cAbelian Group of order 1
0 d3 d/ {! c5 S; |+ v# AMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
$ B5 Q/ W: a, E! Z9 s- c5 ]-3 given by a rule [no inverse]
6 [& a' S# b# L, J( c$ ?) W7 _1 _Abelian Group of order 19 a0 s+ P$ U. O+ S4 U+ @, i  f
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
3 l2 S, W0 G  t- C: K1 J9 ~0 L-3 given by a rule [no inverse]5 s  M9 e# k2 T8 `' M; D
false
9 m( {4 P! M1 ~9 s$ Cfalse
作者: 孤寂冷逍遥    时间: 2012-1-5 08:36

作者: lilianjie    时间: 2012-1-5 13:02
本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
$ V0 q1 v. Y4 N5 |' i
1 `) j' A! }9 _: r% P" FDirichlet character
, r, t8 t, e9 m9 B$ cDirichlet class number formula
0 K$ A7 |9 Q# J' t, c& F  b* L
虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
) Z' }! Y6 t. s
* F5 p4 ]: ]: _! Y3 D5 A-1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1, l) f3 E6 v- I! H- [* k. w
) e/ r6 O0 m4 V- Q
-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1," {; [0 U+ V9 G- N: @9 J
h=-6/(2*3)*Σ[1*1+(2*(-1)]=17 p# k+ s. Y! m9 A3 K7 G

( u4 J( @% o% o6 S-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,; w% N0 A1 Q; g. z9 \6 b6 ^( t

  M0 F% Z# t: x: B$ E# G: `2 ?6 e& \: k4 f

" e$ M$ `( E9 O* c% ]  z) Eh=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2% o" i2 r' Q1 c% H$ y

9 G6 f8 A% `) d, ?9 s% y" l/ l( v9 d3 {! b8 d2 ]8 ^  s& V( w
% p" k  Z9 c. B7 Q$ {2 M' }6 g/ P
-50时  个单位根                          N=200! H! t2 W: }# r  P; ^

作者: lilianjie1    时间: 2012-1-5 13:51
Dirichlet character

21.JPG (79.18 KB, 下载次数: 220)

21.JPG

11.JPG (74.76 KB, 下载次数: 228)

11.JPG


作者: lilianjie1    时间: 2012-1-5 20:37
pell   equation

11.GIF (22.03 KB, 下载次数: 230)

11.GIF


作者: lilianjie    时间: 2012-1-9 20:28
本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 ; N  N$ }  N! b7 x' Y
# R; E& ]' N0 M! c' W' K
F := QuadraticField(NextPrime(5));9 d6 A$ P+ n+ f2 m+ K3 ~7 @

; _5 u$ u- h3 I) l3 t0 v6 x" _KK := QuadraticField(7);KK;
! l  d# ?7 _+ x0 x& `- d& H' xK:=MaximalOrder(KK);
0 w& o* g- ^* M' f2 }Conductor(KK);
$ C5 |& c  G4 }/ |  NClassGroup(KK) ;2 V" O. {7 F1 _. ?
QuadraticClassGroupTwoPart(KK) ;
$ a* \+ Q* W* z" O; `7 QNormEquation(F, 7);, G2 D. t9 O/ Y- J2 y; L$ h6 r9 m, r9 p/ ~
A:=K!7;A;: Q7 `4 z& O: d
B:=K!14;B;2 |2 F# ?" m8 c' K6 x6 ?% X" H4 R* `2 M
Discriminant(KK)& a9 R! i+ R2 ?% Q) h! g
9 J8 b3 e8 L# i8 f4 h; C, f. p
Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
$ @- q* _, V0 F/ S: v28
+ F2 o- @" t. [  T. E0 y+ g1 {Abelian Group of order 1$ r) o$ L5 J& y3 O: V
Mapping from: Abelian Group of order 1 to Set of ideals of K  f4 Z# u# c  e, W3 K5 M" n
Abelian Group isomorphic to Z/2# W/ `1 |& A' l+ P, B
Defined on 1 generator
' i: g0 i) a' m! M& zRelations:5 D/ V( g6 t* F/ |- s
    2*$.1 = 0
3 p0 c9 h+ C5 U/ Z$ IMapping from: Abelian Group isomorphic to Z/2
  N( @; q, L) r/ U6 O7 {Defined on 1 generator
6 K/ x3 A0 ]9 ~/ @5 u" L7 ZRelations:0 w7 h2 i( H( {# Y
    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no 0 W7 i" U- G  s
inverse]) w3 s7 S' w4 o+ a( R
false
7 B9 S4 E  @7 B  x) T0 q73 Q6 j& f: A! f% o9 ?( L' D
14
* T  g' e) C# W28
作者: lilianjie    时间: 2012-1-9 20:44
本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
) [6 Q! j. x. B- n6 i
* t( _) X( @- a) h. s 11.JPG % N( K) b  A8 ?8 J# ]0 \

1 p$ {! `  J% F8 w" k 3212.JPG
5 e1 c) Q! U! {: y8 E
/ j. ]! k: X: o0 x4 V% f0 Z0 S 123.JPG ' F# {# {% ^8 t8 U4 L" Z5 D# Y& E- n

1 o$ h0 @( d2 h. e. }分圆域:3 k( [! n: C( u5 s1 S+ B" u3 Y
C:=CyclotomicField(5);C;
. J$ p# b5 p3 u- }4 x) kCyclotomicPolynomial(5);6 k& q+ k+ f1 O8 Q
C:=CyclotomicField(6);C;
# A% Z/ ~/ o$ J6 y, s# O6 h, W  Z8 ~CyclotomicPolynomial(6);) A6 z# x$ q; u
CC:=CyclotomicField(7);CC;. T9 _" ?; x8 Y; W$ u
CyclotomicPolynomial(7);
" a3 X/ b5 `' q& e, xMinimalField(CC!7) ;4 S! B" P8 x; I: g5 r; W9 y0 @8 L
MinimalField(CC!8) ;
/ e8 K& P& H3 |, U0 r* n. K+ _: [MinimalField(CC!9) ;* u. ?% H5 e, q9 u
MinimalCyclotomicField(CC!7) ;
& W0 O; I: p, g  i* W/ rRootOfUnity(11);RootOfUnity(111);
& g+ D4 [. T! g' O5 l- X6 G$ iMinimise(CC!123);
: D8 N0 C$ {( s( B% bConductor(CC) ;
- P0 y: F  E  L  R8 J6 s' pCyclotomicOrder(CC) ;7 ~$ M9 r$ ~/ u3 L
* T; B# J! w& \2 k) B  b) |: x
CyclotomicAutomorphismGroup(CC) ;
0 g+ ^0 d& x" k: U3 h" R3 m/ h& ?% Z, Z0 U) o$ [
Cyclotomic Field of order 5 and degree 4
* i5 t! d0 `' Q$.1^4 + $.1^3 + $.1^2 + $.1 + 1. _# Y) w$ R, x/ P6 z
Cyclotomic Field of order 6 and degree 2
! s( W( i) {( i( o+ V$ z7 w$.1^2 - $.1 + 1$ [4 C) V! i5 ?4 u4 i
Cyclotomic Field of order 7 and degree 6
7 Q% ~. j) Q5 b2 U# u) A$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1
8 M6 z3 |* O" W. uRational Field
. O  v5 n# {6 b* ORational Field
( M$ P: z( R& o6 S5 I/ vRational Field6 @& B6 l1 {2 B- F1 h! o
Rational Field4 R' l0 Y1 l, X3 n
zeta_11
" @" T7 r$ Q: J+ Czeta_111
. O) H* y. Y" }( t) X. s123/ N9 _# \, g) C& A; n5 c4 S
7) G3 ?+ h+ ~* e! y
7
0 }8 u: f$ F$ z& Y5 R; L3 Q- HPermutation group acting on a set of cardinality 68 i( p  F- B/ j2 s
Order = 6 = 2 * 3
+ D0 q* D# z! Q6 u7 ^7 f0 l    (1, 2)(3, 5)(4, 6)
7 M( z! E3 ~* h* J    (1, 3, 6, 2, 5, 4)
* T3 [- p) ^) P* p1 T# PMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of % B* V  k1 K. X! n, R$ f
CC
: i6 A3 K) R$ J' W9 c8 Y6 VComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, / r+ p' o7 n7 J2 \: f$ ]4 o
Degree 6, Order 2 * 3 and
# c  z# A8 ]; e9 ~9 i2 iMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 6 Q( R3 D( W$ S, {3 s
CC
作者: lilianjie    时间: 2012-1-10 11:34
本帖最后由 lilianjie 于 2012-1-10 17:41 编辑
$ V- F% x* H6 f% D
lilianjie 发表于 2012-1-9 20:44 " I5 g+ v( B5 z# O7 b
分圆域:
4 g) i4 G+ l, G& s0 G  K0 ~7 k3 b( SC:=CyclotomicField(5);C;$ ~, c/ [+ E6 |* I0 L0 Y2 F) Y- N
CyclotomicPolynomial(5);

, l6 W) X# l% z3 X( A* O- y( }3 M( x5 r6 A5 H. F
分圆域:
" o5 H) u+ D- O( P分圆域:123
$ z' f- H9 i! u' {. x, S- n% z0 k- B2 `0 k
R.<x> = Q[]
% H. |& y- i: P0 k, L/ X' h4 CF8 = factor(x^8 - 1)6 m' v* m$ {. g0 O( L
F8! a. x" U( e0 u# f8 c7 |6 |- n4 D
9 S6 {# w7 A- m% U5 S& m, N3 C
(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) # Q/ B' c* C$ u: L' |7 I

9 u' A7 D/ Z$ D' D" ]2 H/ LQ<x> := QuadraticField(8);Q;
$ r, y8 A! f7 z) ]; {C:=CyclotomicField(8);C;
2 H" J; m7 E  o/ y8 @+ EFF:=CyclotomicPolynomial(8);FF;: H5 i+ B5 ]) z2 P4 u+ {+ L; @
/ e' L% P; k, c- _
F := QuadraticField(8);
5 N0 v& o& ^& U; yF;
8 s+ p# B8 C3 BD:=Factorization(FF) ;D;
+ T) O! V' t; `) ~2 e3 PQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field" ]: s. Y+ A) \4 ^0 ]
Cyclotomic Field of order 8 and degree 4
+ H% M4 E' x, `3 K) {! r- J: ]' c$.1^4 + 1" j- s# s  U$ Y/ j. e  H, |
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
9 m9 w0 G5 K$ o[
1 o" p  o, C1 z0 C3 V0 h! Y! n    <$.1^4 + 1, 1>0 A" v0 X) f( Q# Z
]. I" n, C- i" |, [: y0 n1 W/ @
9 ^/ Y( G0 p- o7 h0 |( J" w
R.<x> = QQ[]
; ?/ @- l6 V8 ]% JF6 = factor(x^6 - 1)  E$ `1 I. J* O2 t2 e, X5 D
F6# U3 G' x! g8 y1 s8 o

) J/ A# ]9 g/ f6 i. W9 v9 m" S(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) 6 b& Y0 K; O! G7 r6 o

( }/ p; y, K% jQ<x> := QuadraticField(6);Q;
: {' Q- V' J, j; ]$ V7 ?C:=CyclotomicField(6);C;
2 @/ R) [2 O* H/ lFF:=CyclotomicPolynomial(6);FF;6 S  E& g( Z# ~. q. `& o+ H
' g+ N5 L" K$ |7 u' B
F := QuadraticField(6);3 R$ l4 H! R% z
F;
8 u5 q5 J# [' ?- K. g. GD:=Factorization(FF) ;D;
! |5 y9 N* n8 i# O4 F, _& a3 O; uQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
4 h1 J' _. G) K! RCyclotomic Field of order 6 and degree 2, J5 f# M0 V1 Z7 {8 i
$.1^2 - $.1 + 1- ?. q6 z: }4 p- I% \$ c2 N
Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field# O; X: z2 k; t1 l' {+ F' e) b
[
0 b8 }, k1 w* ^! F0 n( F) l    <$.1^2 - $.1 + 1, 1>+ z' P* h4 @6 l' t* M) `1 v
]2 N4 O6 w8 u+ m$ f0 y
. u' a; S, C. R4 z5 k) {: ^1 a
R.<x> = QQ[]$ l, V( f* j6 W7 M6 @
F5 = factor(x^10 - 1)
  O3 t, Q$ ~" f1 M- bF5
7 I- e! Q- m0 O( g5 M& Z(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
  C* w# G- y9 e& p) ^1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)& y8 H6 S- n4 u: I  t4 X. ~% M
) J4 r4 l" y9 v8 M6 ]7 O$ T
Q<x> := QuadraticField(10);Q;+ y# ?" h1 }6 J* m8 i* K
C:=CyclotomicField(10);C;/ Y, ]6 |" f; T* c
FF:=CyclotomicPolynomial(10);FF;3 {) w  z  h. Z1 E
/ R& G; C- ?" H  ]) B
F := QuadraticField(10);! O$ k% b9 y4 J& _+ Y2 O0 I
F;
1 u2 E5 ^8 X* X" ^7 I- C" `( [D:=Factorization(FF) ;D;7 I0 B& z& i, E; }$ u% }2 y
Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field4 t- Y# \( x) ?& A6 m4 B
Cyclotomic Field of order 10 and degree 4
) i" V& l( k  |/ I1 W, M) D2 Q$.1^4 - $.1^3 + $.1^2 - $.1 + 18 ?2 |! }. {0 j0 ^' s
Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field% }& C' G" z  J7 N6 Z3 {+ I9 g
[$ k. K( a. x7 `1 ~) n
    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>' S0 I) Z  ~& f
]

c.JPG (217.37 KB, 下载次数: 225)

c.JPG

aaaa.JPG (98.21 KB, 下载次数: 223)

aaaa.JPG

aaa.JPG (157.27 KB, 下载次数: 224)

aaa.JPG

aa.JPG (126.91 KB, 下载次数: 227)

aa.JPG

a.JPG (242.91 KB, 下载次数: 241)

a.JPG


作者: lilianjie1    时间: 2012-1-10 11:55
分圆域:123

cccc.JPG (151.31 KB, 下载次数: 236)

cccc.JPG






欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5