数学建模社区-数学中国

标题: 常用数学公式(符号)读法.pdf [打印本页]

作者: lilianjie    时间: 2012-1-5 11:26
标题: 常用数学公式(符号)读法.pdf
Pronunciation of mathematical expressions3 @3 F8 a' ~; J
The pronunciations of the most common mathematical expressions are given in the list" J" V3 y7 w1 @1 H" w* C
below. In general, the shortest versions are preferred (unless greater precision is necessary).. C% s/ f$ [: f* ~! {1 t- v$ }
1. Logic0 r3 k( s  b+ G5 x& G9 w& d
9 there exists
7 K; j% w, C( ^! [8 C5 ]8 for all
3 X, q: J: P. a+ Z2 \4 Pp ) q p implies q / if p, then q
/ u* G' @" U* g# ^7 }* dp , q p if and only if q /p is equivalent to q / p and q are equivalent
# g" ]2 h+ a* A0 j2. Sets+ i9 ~8 N3 \5 w: Q; s
x 2 A x belongs to A / x is an element (or a member) of A  P6 v0 [8 c3 N
x =2 A x does not belong to A / x is not an element (or a member) of A  F5 h0 |* q$ B+ R
A ½ B A is contained in B / A is a subset of B
1 Z/ A4 \) L- [0 j) yA ¾ B A contains B / B is a subset of A
! h, m3 }6 m3 D! @: {% v7 D" S$ W3 sA \ B A cap B / A meet B / A intersection B; D5 f& Z1 p! Y& T8 P( u* z# t
A [ B A cup B / A join B / A union B7 `, A9 o: J2 H( {# t# S* a; [
A n B A minus B / the di®erence between A and B  m- U  I5 E) ~# p! Z& ]2 d
A £ B A cross B / the cartesian product of A and B8 L; d# J. ?$ h
3. Real numbers
) l8 r* ^9 {& g( t! ~) d! Ax + 1 x plus one
5 H: Y" f' ~2 |+ _2 s0 |. _( ^1 ?2 E3 ux ¡ 1 x minus one
. L; ?$ [- U1 q: {& N& V4 sx § 1 x plus or minus one4 i2 z2 S8 j0 E4 U6 |. Q
xy xy / x multiplied by y( d9 e. B* t0 S' T: `: @+ s4 X
(x ¡ y)(x + y) x minus y, x plus y
# p7 ~- r7 m, [' V' q6 \x4 i( f- b- v! y$ t8 G2 s1 U
y
* E8 m: z/ H0 ]& p2 L3 |x over y% g/ H3 o6 f2 l" E% z' g3 T
= the equals sign5 O9 A5 v# P5 w4 T8 k& t
x = 5 x equals 5 / x is equal to 5
2 N/ U  g/ g7 Ax 6= 5 x (is) not equal to 5& }# J. Q3 N6 L+ j. D# Y% a  F
1
. r; ?$ K9 L7 C4 ]x ´ y x is equivalent to (or identical with) y' V! @2 _% A; p5 g& R0 q: Y* B
x 6´ y x is not equivalent to (or identical with) y
" w( q& R2 t' N& N# u/ S2 O% F, xx > y x is greater than y
  g: o$ G1 x) E  a  vx ¸ y x is greater than or equal to y2 Y. }0 i, T2 c- M/ H
x < y x is less than y: o2 S" ~# y3 v0 b# p
x · y x is less than or equal to y
- p$ B1 `& |, T; P4 t% z; B  S+ t/ ~0 < x < 1 zero is less than x is less than 1( U# I' F! c2 \4 A
0 · x · 1 zero is less than or equal to x is less than or equal to 1
. P; {; w7 Q2 M; C& @% V# p: s9 o$ gjxj mod x / modulus x
! `, @4 W: o. t0 U! i0 Hx2 x squared / x (raised) to the power 2
2 r: l# X- p+ z) h# z2 l6 v  tx3 x cubed
3 M2 p$ ~+ b+ M6 \- d- ix4 x to the fourth / x to the power four9 g7 \) B1 U! C' E; t
xn x to the nth / x to the power n
7 f( D5 c- k. x7 Z& s% @x&iexcl;n x to the (power) minus n
& A; X8 R- |" V, F' F& npx (square) root x / the square root of x  V" D; K1 n' Z; e; z" C* \
p3 x cube root (of) x
# s1 G; S8 }  D( j- Z) zp4 x fourth root (of) x
6 C# i5 i; R, L8 N. t' ?( g" ?npx nth root (of) x
* j" @$ z( o5 ~! R(x + y)2 x plus y all squared
) B3 j8 j  l- V- E; `8 E1 |" G&sup3;x
) D; A9 E! c6 t, A3 Cy
2 @8 x7 z5 j# A& [8 \5 _/ x&acute;2, y! C! I3 Q! @0 J- c2 E5 C8 x( X  K
x over y all squared
" k  n) ~: ^! t  u2 @7 d3 N5 ~n! n factorial
: l3 D. v7 k0 i0 h^x x hat
, _) E) ]$ ?6 ]7 V  Y&sup1;x x bar4 M7 y& [5 x% \: a% y5 Z
~x x tilde
; X6 F& d$ b2 P# ^0 J* l& D/ lxi xi / x subscript i / x su±x i / x sub i
8 f! Q7 a% B) j/ t6 UXn
$ u9 L# B2 j* v9 x; H3 {5 B4 ~i=1( @2 s+ F" D. K8 ?- S. j  {
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai$ m! k$ R; S, m! W* k: t
4. Linear algebra
) X6 a  D- ^' q3 ^+ V) _' g8 g1 Bkxk the norm (or modulus) of x7 S5 l* p, |4 C, |
O&iexcl;&iexcl;!A OA / vector OA
: u# B. s2 U8 C$ \OA OA / the length of the segment OA
. @' D  l# {& s" @5 ~  iAT A transpose / the transpose of A' S0 B" i7 J2 |1 E, p
A&iexcl;1 A inverse / the inverse of A! A3 n7 t; z  S' Q; b3 H  p
2
& p) G) o9 ]4 ^3 C+ q) p5. Functions$ D9 e, `, }( h" d  R% t4 I! N
f(x) fx / f of x / the function f of x3 ]  d+ Z4 a7 h# p; B* f. p) F
f : S ! T a function f from S to T4 \5 i3 B! L: r: U
x 7! y x maps to y / x is sent (or mapped) to y$ P2 n6 n% A' I/ ^! Y2 f
f0(x) f prime x / f dash x / the (&macr;rst) derivative of f with respect to x8 k5 a9 E0 P+ S
f00(x) f double{prime x / f double{dash x / the second derivative of f with
; r& w5 Y1 U) I9 M6 brespect to x
5 v- n3 C8 K- e* Yf000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect! t' {( @$ `# X+ ~2 c
to x3 p; `+ T  D, p
f(4)(x) f four x / the fourth derivative of f with respect to x# ?* M6 [: ]) R7 f2 Q  r, [
@f
8 q7 x3 _; M  J2 X@x1
5 K0 [8 K) D# E8 I* y* u# h5 ?the partial (derivative) of f with respect to x1
1 @; P% e8 }1 ]' b@2f
7 g) D/ s# R+ Z  r( v! J@x21
. E0 L/ {3 E3 q9 k! g9 ]" cthe second partial (derivative) of f with respect to x1
! J6 P; [! m. ^1 }Z
* A% \/ `9 B; q" a  a7 E1; r2 y- V1 w4 o+ X* \0 k( ]& D5 c
0* W( r! o( w% O
the integral from zero to in&macr;nity# C5 Q( ]1 [0 r8 i1 F  f
lim" K/ h$ v5 F6 n" k
x!0
+ G# N8 P$ _- l7 m2 o- C, |the limit as x approaches zero6 o8 L; F1 O& x! |( c) v; d
lim) ?0 |& q, h. h
x!+08 p. Y7 S3 [- ^$ _( a
the limit as x approaches zero from above+ i: A4 Y% c" x2 T9 |( H. ]
lim6 z: x- P' V% E3 x. q! W) o6 |
x!&iexcl;0' m) I2 {) I3 r: \/ q6 z9 g
the limit as x approaches zero from below6 g  G" X- C2 C2 q! h  |
loge y log y to the base e / log to the base e of y / natural log (of) y% r" ]6 ^5 Q& S* S
ln y log y to the base e / log to the base e of y / natural log (of) y4 s0 |! W- o* ]/ T. J2 R
Individual mathematicians often have their own way of pronouncing mathematical expressions0 w; \$ ]$ t6 T8 ~5 v
and in many cases there is no generally accepted \correct" pronunciation.
& q% H7 F( _5 N6 z8 E2 N0 z; _Distinctions made in writing are often not made explicit in speech; thus the sounds fx may$ l" a) ?/ c* E8 z) w
be interpreted as any of: fx, f(x), fx, FX, FX, F&iexcl;&iexcl;X!. The di&reg;erence is usually made clear
# ~/ |! M9 d9 `9 c/ @; n6 H3 y1 Qby the context; it is only when confusion may occur, or where he/she wishes to emphasise( l2 T, E8 `6 r, m% E
the point, that the mathematician will use the longer forms: f multiplied by x, the function0 T% r' J" l2 [$ s  B
f of x, f subscript x, line FX, the length of the segment FX, vector FX.
  }2 J% d3 N& l4 wSimilarly, a mathematician is unlikely to make any distinction in speech (except sometimes. N7 q$ g/ b- f. `+ a6 z
a di&reg;erence in intonation or length of pauses) between pairs such as the following:
% W- V/ i9 s) q6 h4 h+ A& h, @x + (y + z) and (x + y) + z
5 t& v. F! y8 W$ X- I8 ppax + b and pax + b! g$ V, y, G' ~2 }3 {" _
an &iexcl; 1 and an&iexcl;1
- H- r, |; @: \9 DThe primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science- _9 `3 N0 v; j3 K* R6 n6 W
and Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have
# j6 u9 J2 ?7 X8 _& N$ f4 cgiven good comments and supplements.
2 F4 _: D& R) L3

常用数学公式(符号)读法.pdf

83 KB, 下载次数: 10, 下载积分: 体力 -2 点


作者: lilianjie    时间: 2012-1-5 11:44
NO常用数学公式

1.10.8_box_5.gif (2.99 KB, 下载次数: 570)

1.10.8_box_5.gif

1.10.8_box_3.gif (5.28 KB, 下载次数: 349)

1.10.8_box_3.gif


作者: 孤寂冷逍遥    时间: 2012-1-5 12:06

作者: yt@A    时间: 2012-1-13 18:17





欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5