数学建模社区-数学中国
标题:
一些初等函数:
[打印本页]
作者:
lilianjie
时间:
2012-1-11 12:30
标题:
一些初等函数:
:=IntegerRing() ;Z;
6 `1 P- m* }, Z6 m3 V
n := -1666666666234567890;
) m6 D( |0 i0 b8 x2 O5 S2 c
> n;
: ~2 a% E; C4 }( y5 b H
N J( t0 Q5 } h
> n:Hex; 转16
; S, E8 T$ J' L- U
IntegerToString(n, 2); 转2
- }$ }( v S1 k- }: \& J2 R
IntegerToString(n, 10); 转10
: I# M& L7 _, N: F; W3 h
IntegerToString(n, 16); 转16
7 I8 R+ V" M3 @) g& d% n
IntegerToString(n, 36); 转36
IntegerToString(n) ;
$ q9 E; z- H# o/ r4 A2 |% o
IntegerToString(-0x17213080A7E55CD2);转串
Zero(Z);
/ J' y; X$ Y* w1 Z. m* z
Identity(Z);
5 a3 P; @( P! N4 W
Representative(Z); 环代表元
0 s# l/ v9 ?( n* r, F( Z7 P6 X
Eltseq(n); 取整
/ i; b% J, e& Y3 m3 \
Eltseq(-0x17213080A7E55CD2) ;
Denominator(n);Denominator(12/13);Denominator(222222/111);
3 A; {+ O! d# ?* I
7 R% B& E) i' I, }
m := elt< Z | -0x17213080A7E55CD2>;m; 在虚实2次域中进制砖换不变
7 _$ z0 m5 L F4 [% B- n- k
k := Z ! elt< QuadraticField(3) | -1666666666234567890, 0>;
" M8 J7 Y! C* N4 o
> k;
. p0 G* s; Y1 g j2 A; r0 z) T- T
n eq k;
- ]/ j) K' S' r' F d4 P
kk := Z ! elt< QuadraticField(3) | -0x17213080A7E55CD2, 0>;
! u* Y* p+ P2 M2 a) E
> kk;
1 m" u" o0 R3 g& q0 i( ]
kk eq k;
7 u. M- w9 `" j f) M& {5 I# X* o
\: ?& n& Y% ?: U& |
k := Z ! elt< QuadraticField(13) | -1666666666234567890, 0>;
- I; D* K8 S: f3 Y
> k;
5 h7 j% a8 f4 i" y# O8 i7 x
n eq k;
8 F! ?8 m, H- T. b
kk := Z ! elt< QuadraticField(13) | -0x17213080A7E55CD2, 0>;
1 [; _/ i, }1 v/ h0 ~% @
> kk;
* [! G+ P2 \* e9 |
kk eq k;
( W2 W+ R8 O6 b8 c
; t* D R) p0 P& U- \
Eltseq(kk) ;Eltseq(-1/14);
, r% g/ p( K3 [" l! |2 c3 f
- j5 x: b; l) H" l4 z! s9 X1 E
6 f/ P4 }3 h6 @) A! l; a
" ?& ?. [: G9 M+ O
! r; u! Z! ~# E) H
k := Z ! elt< QuadraticField(-3) | -1666666666234567890, 0>;
# h! s+ i" W( e, O% V6 z
> k;
! h- ^1 V0 } m" q0 a
n eq k;
- K& j4 l* b1 O8 w$ E/ ^
kk := Z ! elt< QuadraticField(-3) | -0x17213080A7E55CD2, 0>;
% ]3 C, A) z& E4 Y) o8 x
> kk;
# O$ O0 X8 _" ~/ H6 V2 @
kk eq k;
8 j' X1 x/ D* E. R1 V# O& H
: t. L# d0 X! L% p! Q8 k8 i# D
k := Z ! elt< QuadraticField(-13) | -1666666666234567890, 0>;
" H) }7 W: J, [
> k;
3 x, j1 C' C. i% E5 h$ b
n eq k;
. ^1 Q- @1 s. D1 P; B* K
kk := Z ! elt< QuadraticField(-13) | -0x17213080A7E55CD2, 0>;
3 V3 X- r. u9 M/ e& j$ |
> kk;
" I/ }& B$ |2 E# L
kk eq k;
5 g; K' K" b7 D; o4 H O
9 V' X5 o0 O8 c6 |8 W. ]# A1 }' O% K
Eltseq(kk) ;Eltseq(-1/14);
/ C F n4 ~1 ^
, I$ y" G' O) V8 p$ K: y/ i/ d5 n% U
1 Q9 U& m' k$ X& ^
: V& F. e; ^- U! @' V
; T5 d* o+ n2 c4 l, v$ Z
T8 N0 b7 D; K6 Z7 m$ Y
6 j4 s6 F3 r: D3 _2 e* Q
( m( i9 U0 i- D1 R! Q) y/ e( J( U
* Y5 Z% |7 K0 M% S* X
x) e, Y( w& E5 f# ~/ ]8 U2 t$ {1 V
% U# a6 b$ _2 y. _5 ~
=============
8 ~6 @+ ^3 s9 n1 J
' J' \5 e1 N! d0 [1 D
) d5 k0 |" M+ D. E0 J# R& `
; `3 {# J# m( K$ j2 J* _( t
6 ]$ r4 v6 ~" U2 @/ r1 e
Integer Ring
6 z) q. R7 J1 ~$ Z0 u# @6 k/ R
-1666666666234567890
3 F: ~; ]* H, h- x% b& z, R
-0x17213080A7E55CD2
: N/ h0 i. m' G: I3 K
-1011100100001001100001000000010100111111001010101110011010010
8 v7 l; n6 Y$ ~# l
-1666666666234567890
], }* j1 Z1 y& {/ |4 ^( Z* Q1 z/ j
-17213080A7E55CD2
- U, Y( u7 f& S; x \: r( i
-CNUO0WGPY9CI
]/ y( W6 O! A# `# K7 ^: _
-1666666666234567890
$ |; u* Q/ J3 |7 V# J! O4 s! c
-1666666666234567890
4 v2 ~6 \5 o3 U( V9 z, G
0
+ w+ w9 y# U% \% b1 \& `1 a8 X
1
w# ?) `' K o( e' @2 D
0
' }( B {4 _& {. S2 a6 Z
[ -1666666666234567890 ]
?7 l i3 a2 m) H M
[ -1666666666234567890 ]
. V: D8 r9 K9 q Y( w$ W
1
3 ^" l) S; P) w$ T# t2 i
13
/ e; Z' b5 H$ [! f
1
$ q2 G* {; n: b; e. o5 z5 _
, `& N. l: U2 j1 d. A/ P, s
-1666666666234567890
, q9 P/ L; E" ~: T
true
* N% G5 u: \+ ?5 F B
-1666666666234567890
: S+ V g% K: M! f. H
true
- r4 {3 z5 ~& ? G, X
-1666666666234567890
6 n. j7 n5 y2 \2 ]" ?! w# d
true
8 K# k2 q( ^! S3 \8 l
-1666666666234567890
/ ~$ B+ V1 T+ H
true
0 j8 C& o: W: {/ o$ h1 ]
[ -1666666666234567890 ]
8 g# _5 E! s$ ^* Y
[ -1/14 ]
. V! o) L( ]# ~
* U" R7 E; l) G2 ?) {6 W/ J' V
8 M& Z# L" p9 z+ `: v' y f
4 V" E& s" |2 _/ @/ `
- [3 u% Y2 H3 i, p9 }$ k
( h4 r7 [- ^% |" Z' V
I; v- A/ q$ A+ T& U a% W
7 [( p! Q$ _+ Y
-1666666666234567890
3 f+ U( Z& _ H: B$ G4 }6 X) n
-1666666666234567890
9 j9 ]1 U7 Z! q( d0 T4 z
true
+ O) U+ y. t9 k9 b! N0 a2 u; J
-1666666666234567890
, C9 R# Z& V$ K( o6 i. B
true
5 P( L2 Z, {* W6 g, o
-1666666666234567890
; Y) l4 B5 `8 ~' \
true
* S& }9 t$ c7 I" H' B5 d3 ^* x
-1666666666234567890
' j. f6 u* R# P, c2 ~
true
8 ]( E2 b1 u s! J
[ -1666666666234567890 ]
+ n7 \( S o) K8 D4 P
[ -1/14 ]
) i" ~& F2 H" z5 }$ a. b2 v8 Z
4 j, s) D b4 Z' G# C
作者:
孤寂冷逍遥
时间:
2012-1-11 12:42
作者:
lilianjie
时间:
2012-1-11 12:49
ss:=12345678111;ss;
x. o S, Z0 ~0 ?, r
s:=0x12345678111;ss;
, q/ e/ ^: {( Z! v) d1 Y5 f
& }1 P( f4 H" B/ z4 V" d
sss:=Factorization(ss);sss;
6 ]" D+ { J! Q8 t) u" f
sss1:=Factorisation(s);sss1;
7 f! z# R: N P0 {
FactorizationToInteger(sss);
! t2 h! Y" s. X) V8 [5 D9 Q+ |; L' a
FactorisationToInteger(sss1) ;
. `, U1 |0 @/ u% }' ^7 I
Facint(sss1);
因子分解和还原
ssss:=Intseq(ss, 2);ssss;
4 `2 H) _$ X+ R* w; T: B
SequenceToInteger(ssss, 2);
& C3 M, m8 i: t7 R2 ?* R
ssss:=Intseq(ss, 17);ssss;
4 k" t3 A0 B9 C" l
SequenceToInteger(ssss, 17);
1 ]- J/ r6 f/ V, ?7 V0 i% y7 H* V
ssss1:=Intseq(s, 17);ssss1;
# L4 ]1 }3 N7 ^) c
SequenceToInteger(ssss1, 17);
转成2和17进制
+ S0 S8 P. F y( P8 t+ m4 T
/ v( a8 Q t5 d1 q G2 J. u O
12345678111
r3 z$ c' z% E6 {2 n+ R
12345678111
& I1 H8 p6 L" O& L7 p
[ <3, 1>, <13, 1>, <31, 1>, <1447, 1>, <7057, 1> ]
/ y1 n& A! L5 m1 n6 A. w
[ <3, 1>, <83, 1>, <34129, 1>, <147209, 1> ]
0 x( n4 ?' h$ ]9 R
12345678111
6 m; v- G* l, c* N! z k0 Y
1250999894289
8 d4 W4 [' e/ [7 O/ }. `* ^+ l, r
1250999894289
, |7 [3 D0 W. W- r% Y
[ 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,
, {7 B# Z( A5 v2 t- }# U8 v3 A
1, 1, 1, 0, 1, 1, 0, 1 ]
4 Z1 `, C) ]! a r
12345678111
) u, |' Y* b; _* n9 r$ o% b5 z
[ 8, 6, 6, 4, 0, 8, 1, 13, 1 ]
/ z- l. N% {- W. \& ~4 t
12345678111
5 \7 U. i) }7 O9 \( ~% g; v
[ 14, 6, 7, 11, 9, 15, 11, 5, 9, 10 ]
, K8 ?- B7 @; W
1250999894289
作者:
lilianjie
时间:
2012-1-11 13:12
本帖最后由 lilianjie 于 2012-1-11 13:31 编辑
n% m8 J9 j; `; C
7 C# k( S& J) C: b. j
Z:=IntegerRing(5) ;Z; 模5等价类环
n := 1666666666234567890;
1 u3 F: E: O4 \5 [5 f& X/ K& [
> n;
- ?/ L) X7 z( G; C) M4 b
n1:=Z!1111111111111111111111;n1;
& R$ M2 o4 V Y( V
n2:=Z!11333331111111111111111;n2;
7 B& b. i- }+ f: R+ v5 ?# Q
) l( \8 n# ?$ j$ c4 m& k+ d+ W% e
- U2 k% Q) w% ]+ C0 `) t
K:=Z!n1+Z!n2;K;
$ ] v& z6 ~/ H' A) x1 m
; c) b0 [( z) n9 F0 Z" G- z0 k
IsField(Z); 是域吗
Characteristic(Z);环特征
6 {$ a3 R- e2 {7 |5 V0 Z
IsFinite(Z);有限环吗
* J2 \5 E5 ~/ R7 ^& {
IsCommutative(Z);可换吗
* [( W. U( k7 X5 _. {( {
IsOrdered(Z);有序吗-------应有不过这函数没有这功能
IsEuclideanDomain(Z);欧整环吗------欧环还有非整的。。。。
. p, u4 S U1 Q5 Q, q
IsPID(Z) ;主理想整环吗
& k' Q3 o& s/ I! ?/ T
% f4 X' v" W. X9 S; L" Q
IsUFD(Z) ;唯一分解吗
) n/ H M# K& @( t/ e
IsDivisionRing(Z) ;除环吗
; n. t9 I; C4 ?. q5 M4 c
IsEuclideanRing(Z) ;欧环吗
4 j- v J( w1 M. {! m% j
IsPrincipalIdealRing(Z) ;主理想整环吗
6 w& n& V6 }. J+ ?% z
IsDomain(Z) ;整环吗
FieldOfFractions(Z);分式域
) Z: H# _ l! U# _) C9 V
UnitGroup(Z);单位群
7 k7 o1 W2 p5 y c( k/ M
MultiplicativeGroup(Z);乘群
" D- p& t7 d. f1 q2 c
Category(Z) ;范畴
Parent(Z) ;父环
3 T. D3 x1 y0 M8 U; u g( k
PrimeRing(Z);素环单环和本原环不同
Center(Z) ;中心
8 {5 _ Q/ i! g+ \9 S+ L
AdditiveGroup(Z) ;加群-----就第行一特点
ClassGroup(Z) ;类群----------只有Z才有------难懂理想类群更难懂
; o& G# ~! X4 k9 M
: C7 K& g$ i, ]! e. A# h
ZZ:=IntegerRing() ;ZZ;
5 a& D4 v2 Q; B& z8 [
ClassGroup(ZZ) ;
+ C$ B8 ^# d3 ] B% H6 S: Z
6 v- z. x9 h- d+ V3 f6 q
===========
# P# j* m/ g) G4 x
% v0 E6 _+ p: v2 \" `- }
Residue class ring of integers modulo 5
' b- s! W, g8 m5 I; J
1666666666234567890
! d, U, `' v2 L4 s: F0 R+ @
1
`! t& \" D! Q+ d. y' Z5 Z
1
( l0 B6 ^ j, @
2
7 x2 S! P4 B' o' F- D" i' j/ B9 l8 v
true
+ S8 V+ p8 i+ t0 t" I
5
0 u( a# w+ Z$ ~1 j4 A& _
true 5
2 O2 _/ a7 v! n5 R
true
% Y& W: b/ L% o T
false
; l' z0 g) f4 I1 |' X6 T% o
true
) \( |, y5 t3 ]
true
; s q$ A6 M s
true
* ?6 u% ~& G# [5 a
true
4 C: }# ]; y1 L/ e9 v
true
- _- f# T. ~1 |. B2 [# y
true
5 i6 E6 z5 y i9 x6 q# ]8 T( J
true
! a: J( Z. V# d; ? V f+ b
Residue class ring of integers modulo 5
* a. a1 h- [; ]' i. ]! n" e
Abelian Group isomorphic to Z/4
& W Z$ w" U- v. [
Defined on 1 generator
4 L, [5 ^' d6 ^' v4 _9 X
Relations:
* M2 k7 f& F/ O, F7 p
4*$.1 = 0
2 |) y, t% F- N$ X2 x
Abelian Group isomorphic to Z/4
3 d2 t/ P6 b0 T+ S- P' {8 l
Defined on 1 generator
C" w, I3 ~4 }5 X4 c& a
Relations:
. ]. b- Y. _3 ]0 P+ Q5 X; y
4*$.1 = 0
& ~& ?# @% ` H
RngIntRes
1 o8 F! [. e( G3 F" M
Power Structure of RngIntRes
8 F. E( h( T2 _3 G2 { G& E
Residue class ring of integers modulo 5
1 @; M( b( s6 ]; I0 ]2 \& r0 u
Residue class ring of integers modulo 5
. N2 `; q0 q$ r1 q8 L7 I9 l4 Z/ L
Abelian Group isomorphic to Z/5
( s Q8 [4 D- i* k; x
Defined on 1 generator
* p8 q( @2 [$ a( h
Relations:
! m; c# k J% ]/ `! {
5*$.1 = 0
: S- G& V- C/ x; V1 o
$ M, s& F2 K8 g# |0 _, a! S' I
>> ClassGroup(Z) ;
/ m! q, P7 d" h& y6 V9 Z
^
* X+ g1 F5 X; S. V; c* F# w5 r, @. Z
Runtime error in 'ClassGroup': Bad argument types
. Y2 Z2 ~6 p% E9 J( V8 t# ?
Argument types given: RngIntRes
2 o/ h7 L; C! V/ o
$ Q2 u: J U: P8 J, @. \& X
Integer Ring
/ I) o: j6 L6 @9 `- K: R# ^9 m
Abelian Group of order 1
作者:
lilianjie
时间:
2012-1-11 13:52
Z:=IntegerRing(12) ;Z;
5 S4 g9 M' U( u) q2 x5 T, s
UnitGroup(Z);
% O. E. f7 d2 S# A& D' ]# k
MultiplicativeGroup(Z);
6 a4 K* n) P/ S: M( o! [+ T6 R
Category(Z) ;
( _: g3 ]% k* ~- Y! `
PrimeRing(Z);
( H/ g% X* c0 M7 N
AdditiveGroup(Z) ;
# z8 q3 v% ?+ `% L4 `
2 d* K0 T8 U7 Y/ K
Z:=IntegerRing(13) ;Z;
# S7 [; |& f: |: H
UnitGroup(Z);
- U( f3 D+ S# b& Q
MultiplicativeGroup(Z);
% w k3 A3 y+ a' U$ z
Category(Z) ;
0 [% @2 j) Z9 Z: Q
PrimeRing(Z);
: t* y6 A. |4 Q: H8 b. k: R
AdditiveGroup(Z) ;
+ t' [ b0 O8 F* @0 V( }
; \! I* b" r D8 X
" ^6 i' h- x6 R
" V7 A; ]' x# Q1 f( _' o2 b) `$ O
Residue class ring of integers modulo 12
# P4 X/ ~/ }" H3 \1 x- v* e# N
Abelian Group isomorphic to Z/2 + Z/2
6 w7 A$ g: d5 R" r
Defined on 2 generators
/ h1 D2 q& y2 q) l
Relations:
6 ?( [2 m( [- o+ @9 F; }2 }; a
2*$.1 = 0
( L5 R6 a( @' e* F
2*$.2 = 0
9 [" K5 q7 v$ C S
Abelian Group isomorphic to Z/2 + Z/2非素数环的乘群同构两个小群的直积(1*11 5*7)
Defined on 2 generators
N* K1 R2 s; S/ z0 ~+ L- `( r) \
Relations:
2*$.1 = 0
4 G2 e6 Y& L; o% y3 A
2*$.2 = 0
+ R. Y& X" R8 y. g y
RngIntRes
4 t B: Y8 j" s: K- P
Residue class ring of integers modulo 12
* r$ I/ }* L4 F' ^) J8 @+ z; B8 I
Abelian Group isomorphic to Z/12
2 P' ^/ s; c# D
Defined on 1 generator
& ^ o% T3 Q+ d* x( g7 l
Relations:
" z( r* o/ t+ T4 r, m" Q, G
12*$.1 = 0
3 |( ^6 ]7 E3 q: {3 {
Residue class ring of integers modulo 13
9 _5 E$ Z L) m' X
Abelian Group isomorphic to Z/12
' |" w! a7 y% L; C) k5 W' z* W+ l- Y
Defined on 1 generator
7 y7 i/ o- \2 W9 A$ e
Relations:
- Z6 I" _' S5 O7 x9 r! ^
12*$.1 = 0
* r$ z% T# n. v$ T+ Q8 b* g
Abelian Group isomorphic to Z/12
素数环的乘群同构Z13-1=Z12
Defined on 1 generator
/ f$ M' B+ p9 |! M$ u# v" g
Relations:
% ?1 N6 E* ~+ M: t) N3 q3 P
12*$.1 = 0
) l) A. M3 ^8 U
RngIntRes
. H$ u8 V' R1 N& D! w( R
Residue class ring of integers modulo 13
* h* \$ M' S8 [" o
Abelian Group isomorphic to Z/13
4 T5 Z. i. ?! j0 t/ r! A
Defined on 1 generator
9 Z7 o+ ]' ]5 D; l4 T8 Y: ~
Relations:
. { }+ c1 s! P9 G' y d
13*$.1 = 0
作者:
lilianjie
时间:
2012-1-11 14:24
本帖最后由 lilianjie 于 2012-1-11 14:25 编辑
% n [: A& r6 B- s- C% _6 G& o
; U# ]; \: M6 j- c. U
Z:=IntegerRing() ;Z;
6 ?- c- D, \( w
0 x' Z, O, b# X6 ~2 U' {
R:=IntegerRing(12) ;R;
* m1 ]) V7 m7 H6 e& k. t1 h6 F
S:=IntegerRing(13) ;S;
( G. z. l: G$ R; ]2 D; T6 z
+ ?* Q" }& _$ \0 I4 f# }& v( l
8 v- y& a' L: I5 B4 ^0 W' {
PrimeRing(R) ;
3 j5 m4 X R9 J# f6 f
Centre(R) ;
0 A* {9 ~$ e1 D( ]6 d9 W
) H8 @1 v( G5 e
Characteristic(R) ;
0 s9 `. x F1 R' R7 Q) g& }
# R ;阶----元素数
, v3 K0 a% V% r5 `3 d
IsPID(R) ;
非素数不是整环不是极大理想整环,但都有极大理想公因
子
IsDomain(R) ;
6 V8 T% }0 T* `/ _; v
Has**(R) ;
7 s8 A3 m7 O, T( X+ M
: V5 I; J, s6 D) f
IsPID(S) ;
3 Z: D9 Z" M- Z# \% p# p" A
IsDomain(S) ;
5 N" S& k; k5 b* ~; _
Has**(S) ;
$ A' P% d+ K5 F3 t3 O/ W* Z
R eq S ;
4 w: I1 l2 d. R# R
R ne S ;
$ f$ `. F+ w; q, f% O4 s
7 U. W& a8 V6 a: `$ F* ~
Parent(R!123)
arent(S!123) ;
. k q0 J/ _- ^# d" N; S
Category(R!234) ;Category(S!234) ;
, L0 t: L3 t5 K" M! ^2 L
+ E) C( V3 p, }4 h+ j
a:=Random(R) ;a;b:=Random(S) ;b;
( `* N) c; K7 i& z
Representative(R) ;
! t& Y7 Z( z, H
Representative(S) ;
. ~5 I6 B: I$ u6 J% H
# R. C1 w4 J' Q' H: n4 Z, ^
(R!a) in R ;
2 N% I0 T2 \0 L; m, x8 o. G. X
(S!b) notin S ;
: C a5 n5 U# l. l. K( N
IsUnit(a) ; 是单位吗
- C6 v$ Y+ N: i0 k
IsIdempotent(a) ;是幂等元吗
3 z3 K+ \7 ^9 p( k6 `
IsNilpotent(b) ;是幂零元吗
' Y; ?+ ]) ?+ Z% u+ Z
IsZeroDivisor(a) ;可除零吗
. q) B' [( W ]: r( t
IsIrreducible(Z!b) ; 可约吗
IsPrime(Z!a) ;
% v: y* @, X0 g% `% ?/ j4 I v
0 i6 q n5 v6 T
Z!a gt Z!b ;
: Y1 [6 X U0 P6 [- a0 p! |
Z!a ge Z!b ;
; X o5 {$ U# I; o( G
Z!a lt Z!b ;
6 \1 D$ ~% ?$ L3 W; v
Z!a le Z!b ;只有同类环才可比较元素大小,
Maximum(Z!a, Z!b) ;
! _* E' M5 N: Q+ |8 V
Minimum(Z) ;
$ B9 ?- j, h. d5 E, w
3 u# n, E- K1 h
Maximum(S) ;
% M2 z$ L5 |, Q- u# T
Minimum(Z!a, Z!b) ;
) D0 u% p& C) O5 N# [, s
Minimum(R) ;
- M' W2 S2 o+ R9 k
2 l5 V5 k' t7 a
% H. `% ^% W' x" F% T
* w( ]- A$ L; z- h
Integer Ring
0 T* O' U# l' I9 w$ K
Residue class ring of integers modulo 12
4 X- j! d+ d% ^, i- V
Residue class ring of integers modulo 13
! }9 n1 e4 V w2 \# x
Residue class ring of integers modulo 12
P* e# w! {' E' i
Residue class ring of integers modulo 12
( j1 g0 {; n) _) c I5 I' K
12
% n9 Y* ^) e6 \9 W- M! O2 o
12
, f; b: J W/ g$ @& B* W l
false
2 C0 V9 U" F8 p: {: q& g$ I/ h
false
+ l# l& n4 d- l6 X! k( z: ?4 r
true
0 t$ E, [9 |5 E% g
true
' P: d* i3 A- n I0 o$ a* E2 V+ h
true
' I) X" h' X; C3 c7 N' V6 R
true
. ~( p$ Z* N; v4 F( K" D8 q
false
, i" f! K8 t1 n2 s
true
4 [6 A T! d- t' o4 J6 z
Residue class ring of integers modulo 12
: V0 R, z5 O! ]; q
Residue class ring of integers modulo 13
2 n- g3 |6 `; ?' j
RngIntResElt
% w- n/ y8 K/ }. M
RngIntResElt
4 C) `9 w% @" l4 i" B
9
# d4 { Y) J) a" U4 b1 W
12
* X( \1 h7 k3 o% k. c- A) G! R5 l
0
* ?/ R7 @" X) m! ^
0
1 r2 F% M( v4 P3 P1 k" h' c1 C
true
0 z# B, K! H( F& R$ Q: \/ A0 D z/ N
false
3 ]( i* @+ `/ E( G1 D5 `
false
) U+ ~ {8 P3 _1 x% {
true
' d- h* a3 O$ h% K$ ^
false
& o5 E1 K# f$ B8 X. [1 g& V/ A
true
* O5 a2 H6 L+ w8 J7 ^$ v
false
9 W. v; L- r/ B( E& s, c" E
false
1 f( d" m0 N) m/ u' e
false
$ Q6 E! A0 c% W$ `+ T! `( `' [' J
false
( M- P! W2 T9 {
true
1 p3 I) ~, x; y8 @9 I
true
. D3 @1 P( q* N6 h
12
! e1 A; f& ~9 j6 _- \/ p
1
& o3 W- \9 o9 r& c0 _ ?
' S: x% _- U5 z% x3 p1 {
>> Maximum(S) ;
- N! k9 {$ Z3 }, Y7 ~
^
# I O5 N, ^9 |# l
Runtime error in 'Maximum': Bad argument types
) k9 b7 w- V. ]' c
Argument types given: RngIntRes
/ t; h, J, O( |8 c( N
% l) T' x- R& W+ I# H
9
0 A% O. A8 w: u# B6 J
( t/ R* x5 T# {: k1 a9 P7 V
>> Minimum(R) ;
: A6 O3 ?" m& k) T
^
0 b n k: _! H
Runtime error in 'Minimum': Bad argument types
& r4 E% b) I) S! ^ {3 u9 C( u
Argument types given: RngIntRes
作者:
lilianjie1
时间:
2012-1-11 15:48
本帖最后由 lilianjie1 于 2012-1-11 15:56 编辑
& P3 ^/ _( k* M( t; O, e
; ?: l! h1 |3 b4 f
Z:=IntegerRing() ;Z;
# D' j% L2 U' E, x+ ~1 B5 i/ ]
I12:=ideal< Z | 12 >;
, [ P. V4 s$ {- U
I12;
0 z$ R' J% q9 |8 L4 H* e4 K
ZZ:=IntegerRing(15) ;ZZ;
?; S# s1 y4 ]- T4 J
IZZ15:=ideal< Z | 15 >;
% ?) L: ~3 Q3 ]+ _ |9 D9 W
IZZ15;
- h2 O! w# K; u' Z+ @
I12 eq IZZ15;
# D) v8 @% {) i6 B% F
Q1:=quo< Z | 12 >;Q1;
) T" K" G5 @: |- N
ZZZ:=IntegerRing(5) ;ZZ;
7 m7 ^9 {' e/ n6 u6 ^+ u( L/ k
IZZZ5:=ideal< Z | 5 >;
5 G' r- H" ^; ]0 \# ^
IZZZ5;
9 N4 z" Z& y8 ]( D, f& s
( ~) z6 @' B& y P5 }& T3 A, G
I12 * IZZ15; 理想和/积/并/交,
, W* A" x' j# q# V ]5 @
理想和是理想对应两(可多个)元素加,
5 v1 `4 ]- V" }, m$ M+ i% k2 C+ G- _
理想积是两理想(可多个)对应元素积,
% w- t) M! ~# W2 B7 x! Z. u0 \
理想并就两(可多个)理想元素并,就不一定还是理想,
t" o/ u1 m" N+ m: O# U# v, ]
理想交是理想(可多个)元素交,理想交一定还是理想,
' `& R: y9 x* o( l" }
: B z$ ^* B7 H) `0 Q
理想积是理想交的真子集,极大理想交是理想------J根
8 A6 z/ M3 d2 q, H; K, @& d i
理想商就理想间同态:是必须能整除
8 d+ Q2 o4 V! y0 m
I12 + IZZ15;
. _6 I( `# k+ [! Q( p, e: I
I12 meet IZZ15;
( v7 F) v/ m, G1 |3 J
' K. z5 x; q' a; f* E
I12 * IZZZ5;
8 C' k q/ w0 v
I12 + IZZZ5;
- `) C; ~& [' m2 J6 V/ j) g
I12 meet IZZZ5;
$ d! z7 Z* @( [& Y, e0 f. [
I12 / IZZZ5;
! K$ F H4 p' G W0 o/ E$ C3 G5 N
IZZZ5/ I12 ;
0 ^9 F$ [# J; m
Z * IZZZ5;
, h6 _& ~; N" p% V3 ?) Y7 I
I12 + IZZZ5;
0 @" H9 b" d& f5 h. X
IZZ15 meet IZZZ5;
* y a; _+ O9 ? v& `
IZZ15 / IZZZ5;Z meet IZZZ5;
9 N1 G+ @+ Y) b1 N+ h1 R( f
I12 meet IZZZ5;
0 j% k% |' @$ D2 B @$ f& B* c
IZZ15 meet IZZZ5;
8 H( H! D. b. S+ a' H
IZZ15 / IZZZ5;
( y9 J( M- C1 V% ]' M! `
! i" V/ O, X; j. b5 ? P/ g
I12 subset IZZZ5;
运算后的各种理想互相是否包含
IZZ15 subset IZZZ5;
- f' ?, t$ T& P& N$ n
IZZ15 subset IZZZ5;
0 L3 w+ `! i* W: x* M
IZZZ5 subset IZZ15;
0 R% Z! o, i) B$ y7 y* }: Z
Integer Ring
* u; H4 f2 A% |7 U- Q' [
Ideal of Integer Ring generated by 12
" o! }/ u4 o" `* A$ n9 ^; C! h
Residue class ring of integers modulo 15
6 P: ~& U0 S1 C: x
Ideal of Integer Ring generated by 15
# T) D7 W8 w0 c% p/ Q% ~9 ]
false
, X1 L; a! r: X, H, ~
Residue class ring of integers modulo 12
* x9 v2 w4 S3 y3 x
Residue class ring of integers modulo 15
, W+ I0 F" ?6 X( f
Ideal of Integer Ring generated by 5
; P( P% ~! C6 [8 z0 _5 }3 Y$ `
Ideal of Integer Ring generated by 180
/ H. G! i: K7 w8 Q- B7 U
Ideal of Integer Ring generated by 3
5 `7 M1 _9 t: K- x: L
Ideal of Integer Ring generated by 60
$ `; @) f9 _$ U. y6 ~ Y& {6 n
Ideal of Integer Ring generated by 60
8 s# U, N3 C8 z" E2 q& _
Integer Ring
8 C. ^/ O$ N% P. t" h* k7 i
Ideal of Integer Ring generated by 60
) b9 U/ R# p# l* N6 j& ]5 ]$ ?
8 u8 H7 g V1 I( k5 Y. V& \
>> I12 / IZZZ5;
R1 p: G& o4 v4 ^
^
# \. q, t* I% `9 |0 ]
Runtime error in '/': Argument 2 must divide argument 1.
0 f' ]5 [! `% S; u: _! G! S
- U' M2 B, K6 Q' I& G8 ~ }2 Y
, d0 L7 O! Q. G) {7 j
>> IZZZ5/ I12 ;
; ~$ v+ y F) t; ~. r- h8 Y" b+ w
^
7 n; K6 R3 I/ R
Runtime error in '/': Argument 2 must divide argument 1.
, f- E5 C- J! D7 A6 T
( n$ w0 A2 J4 w1 C, {1 l
Ideal of Integer Ring generated by 5
$ ^* V' \) b$ _- T: |; i9 o' u
Integer Ring
7 j$ A6 W. L/ p* O9 j" \
Ideal of Integer Ring generated by 15
2 N) X5 z8 }, Q/ f- d7 X
Ideal of Integer Ring generated by 3
( m/ f* y( r# y6 ]$ O
Mapping from: Ideal of Integer Ring generated by 3 to RngInt: Z
% Q4 o4 c& c9 _
Ideal of Integer Ring generated by 5
0 Y$ k Z- U4 D8 D4 B
Ideal of Integer Ring generated by 60
2 T1 t3 V# w7 S/ H; c7 g6 G$ }6 D
Ideal of Integer Ring generated by 15
9 Z- ~, j# h) m: u* F# v; q9 N2 v4 v
Ideal of Integer Ring generated by 3
# o) U" q5 |1 N9 @( A* l- }
Mapping from: Ideal of Integer Ring generated by 3 to RngInt: Z
6 P& R7 W/ M; W+ P6 A
, o' S1 v4 |; ~; b! g, B
false
: Z1 v# L! c' R: J+ b: W$ n O
true
1 R$ u P9 R8 G, q
true
; D- B V0 g. k
false
作者:
lilianjie1
时间:
2012-1-11 16:39
Z:=IntegerRing() ;Z;
! }" ]; j, v* L
I12:=ideal< Z | 13 >;
! Z6 h: J. i1 X) \# t6 ~0 C
I12;
* `, G$ A* w/ `# J% ]2 O B
ZZ:=IntegerRing(60) ;ZZ;
; N; O+ D3 v2 `
IZZ15:=ideal< ZZ | 31 >;
: L* e, L4 ^5 U/ p5 g
IZZ15;
" D* `! }1 C+ b: d3 L& f- N
ResidueClassField(I12);
8 |- H/ u& i( F* P
ResidueClassField(IZZ15);
环和极大理想的商构成域---剩余类域,剩余类环中的素数都是极大理想
, T& Y$ N( O; i: H1 Q& b, m
loc< Z | 19> ;
% E' b" j) s: _- ]; g" z
loc< Z | 17> ;
; p4 T! I: E7 b$ c
loc< Z | 131> ;局部化:一个素理想到原环元素的映射
! F) M/ b$ W$ |4 b* g9 O6 a" s
ext< Z | > ;超越扩张到一元多项式
9 Z9 U* x( l0 O# G. H a
ext< ZZ | > ;
1 X% _* V3 l/ S8 H& [6 Q. s
4 z- z$ Z% x" H+ \2 p3 v
ext< Z, 2 | > ;超越扩张到多元多项式
. L- V6 F0 k3 U; h5 ~1 Q G7 l
, X+ X. Y- ~2 Z& _5 y/ A" ]$ y/ ^
ext< Z, 3 | >
Completion(Z, I12) ;
/ m1 O( X9 m% G% A9 w8 X
" k6 [) i n* P! Y. U/ n
8 Z2 q- s2 S( _. V
comp<Z |I12 >;
4 ~0 N3 @ ~9 j. M8 t4 `( n a
素理想零理想完备化,和P进环联系起来
y" D* U; a9 i! y- u! p2 |
Completion(Z, 0) ;
3 g" ~0 f" j/ U. e2 T' s5 z- f( g. C
comp<Z |0 >;
, b" v! i) a% j3 a+ y: |0 j
5 S. B J; R0 u' L; B" n
Integer Ring
+ l4 }, p; a) \% I2 h- T) W
Ideal of Integer Ring generated by 13
3 \1 v4 n4 s. P! g1 x3 p
Residue class ring of integers modulo 60
3 i! n! ]2 H' I# Q* d
Residue class ring of integers modulo 60
' n. g# L" {7 b
Finite field of size 13
# W; L D/ x- e7 I- Y# n
Mapping from: RngInt: Z to GF(13)
/ K1 y/ N8 N, w2 m$ x7 O
modulo 13
/ F* F: C u h; n! v+ N! F7 ^2 {
8 q" N4 H1 }3 E/ e- z$ D0 c
>> ResidueClassField(IZZ15);
* }, V8 F) b1 e) @
^
. R, [! l2 h) a! M
Runtime error in 'ResidueClassField': Bad argument types
2 e& Z4 G3 q6 j5 [6 o! K3 k/ |5 D
Argument types given: RngIntRes
0 @$ i4 q2 A7 n! {4 }) ]' x
5 I' d& x @# T# K$ x% E2 r
Valuation ring of Rational Field with generator 19
; \, G6 p' a) K6 K: w
Mapping from: RngInt: Z to Valuation ring of Rational Field with generator 19
9 C8 a2 O* I( E0 k
Valuation ring of Rational Field with generator 17
2 q, S2 B$ W- G' [
Mapping from: RngInt: Z to Valuation ring of Rational Field with generator 17
# X) y( n/ V: I3 z- @
Valuation ring of Rational Field with generator 131
" n$ L* V8 o0 v
Mapping from: RngInt: Z to Valuation ring of Rational Field with generator 131
! G, C7 P* P" B+ S. l
Univariate Polynomial Ring over Integer Ring
; M9 C. V+ h3 @ }3 ]- i
Univariate Polynomial Ring over IntegerRing(60)
1 U* p) X v0 i! _ n( Q/ W
( N5 O. M& g# I7 ?0 h/ d: A; Z3 v
>> ext< Z, 2 | > ;
) c) b* A; n1 }2 v% u; u/ U( R, e
^
/ a0 |9 R1 v; D* |0 \0 ]4 c0 Y6 A
Runtime error: This constructer is no longer supported
) ^) J- s# _/ u! a# h6 L
9 i, d3 Q* s- i/ @0 u; [; U( S$ J. H
4 z, A- C/ G0 }& N6 m2 x
>> ext< Z, 3 | >
3 u. [4 \ u/ }
^
7 S; H8 a6 z, h8 F; p z8 G" D" h# |
Runtime error: This constructer is no longer supported
; V$ I8 J$ r* t$ A0 K
% a7 w: _2 ?- J u G# k5 Y
13-adic ring
. z+ F- W4 s% a& o( O
Mapping from: RngInt: Z to pAdicRing(13)
) o% }8 W; g% T1 z' k
% x) ?- N1 K3 a! q+ b6 s
Completion(
% a# c# c2 M3 x" o: _9 l
Z: Integer Ring,
3 ]3 ?6 y. [& x5 O; E
P: Ideal of Integer Ring generated by 0
# I5 _( C7 d& G% s
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5