数学建模社区-数学中国

标题: 311数学结构种Mathematical Structures [打印本页]

作者: lilianjie    时间: 2012-1-12 13:19
标题: 311数学结构种Mathematical Structures
' y( z7 K6 {& h) |% A: Y4 H
( C1 N8 P1 l4 e+ q" V' }7 ?1 S: }: P
Abelian groups     Abelian group
8 _4 _) M* q! B% S0 tAbelian lattice-ordered groups3 V5 L/ U* E2 Y1 u
Abelian ordered groups$ V* a' \) T0 t' ~7 n6 v: V* f/ t
Abelian p-groups* `3 f" _/ O. V9 i* p
Abelian partially ordered groups7 y6 O) G7 E- Q5 S
Action algebras     Action algebra3 l4 g6 W$ P0 Y
Action lattices
6 _" c2 ]4 A6 |6 X6 Y8 JAlgebraic lattices
+ H6 T7 `+ y- A0 XAlgebraic posets     Algebraic poset
' h+ Q* p6 d9 O, f& P& `Algebraic semilattices$ }3 X1 x/ p: b; I
Allegories     Allegory (category theory)& C  ~" k  `2 c$ v* S) n. l$ |
Almost distributive lattices
0 I0 C- W. i9 CAssociative algebras     Associative algebra' \0 @! q1 z% m6 u, `: I
Banach spaces     Banach space
! T0 M( Q4 |; _6 u' sBands     Band (mathematics), Finite bands: \- Q8 F) q: ?) |. e4 @
Basic logic algebras
7 K9 O/ Y. l3 b& g7 |0 aBCI-algebras     BCI algebra. _" h+ I. a, t. b1 E! H
BCK-algebras     BCK algebra; B  J1 z- B2 R8 r
BCK-join-semilattices5 T1 z5 k* w9 a( S% `. g
BCK-lattices. Y; w. l* t+ e: r
BCK-meet-semilattices
: {% l, S- ]! Z2 q- K. o! B* iBilinear algebras
4 L: S) F) r3 i0 UBL-algebras
' r' m- e7 W' B* a/ w/ JBinars, Finite binars, with identity, with zero, with identity and zero,
7 y* v( p: M9 h- ^! q! A, kBoolean algebras     Boolean algebra (structure)0 @* x' G+ Z" T& Y6 x
Boolean algebras with operators
3 [* h' v% N: r) ~! T6 x: rBoolean groups
8 E1 h8 i6 B% S' [* xBoolean lattices& D$ p; `& y" |" _
Boolean modules over a relation algebra/ v  M( V6 K* L& E  N# v- [
Boolean monoids% k0 B' k9 j* ]) o# g7 y# f/ R0 Z
Boolean rings! f! b! Z# u& p2 Y6 [8 v& ~0 l  _
Boolean semigroups. a4 t: t8 n. x( J- }
Boolean semilattices
8 A" d+ O9 X/ D5 Y: H# Z' {# oBoolean spaces
. F/ U6 T: Z( V" K0 A% \Bounded distributive lattices
  ?( X! h8 w2 ~& g6 Y! {Bounded lattices& J: `3 B2 l$ b! C# N3 l
Bounded residuated lattices
" q. b7 h* J1 o! t" ^Brouwerian algebras! {" D* u- T  _: V" G
Brouwerian semilattices, ~9 K" g1 j% e: r9 \
C*-algebras
5 c, m5 T; j7 J  X2 }9 ~Cancellative commutative monoids
6 A$ f5 Y. P, r0 gCancellative commutative semigroups
1 W0 I  W3 R: x9 UCancellative monoids2 k/ l+ ]+ P; x+ Y- n( e
Cancellative semigroups  s4 s8 W6 C( C! G  C& N; ~  m
Cancellative residuated lattices' K/ v! ]' b- P& ^: e+ w
Categories
, u4 R9 y+ |" o7 I4 ?; Y! vChains* E/ N8 k/ M. w2 n" L
Clifford semigroups
" t5 q( S& w- f2 BClifford algebras8 ^" x6 F8 [' o$ G- a: L
Closure algebras( V+ L* ~  B9 R$ v; t& q
Commutative BCK-algebras
. m% f' s& a  F: O  [* |' }: }Commutative binars, Finite commutative binars, with identity, with zero, with identity and zero
, ^* P" p$ M3 N9 r( lcommutative integral ordered monoids, finite commutative integral ordered monoids: Z& ^+ [& e  i+ p8 `0 ^
Commutative inverse semigroups2 U- p; Z) y' g' D& M( U
Commutative lattice-ordered monoids
7 O' _, ]+ ]4 g" v2 r" ~Commutative lattice-ordered rings$ @# }. a( T, ~0 B* V7 A0 L
Commutative lattice-ordered semigroups
* q5 ^: k& r/ b1 ?% U/ S) UCommutative monoids, Finite commutative monoids, Finite commutative monoids with zero
0 f6 K5 C3 O- ?# o  UCommutative ordered monoids
6 h9 G; M. c2 e# h- D8 U3 @. ICommutative ordered rings
* c% F+ F  ?9 Q1 w7 c0 C2 y5 J& rCommutative ordered semigroups, Finite commutative ordered semigroups% E- ?& _4 s/ I2 l/ z
Commutative partially ordered monoids
; m  G: b3 j* W% f% Q- g( n: aCommutative partially ordered semigroups. Z: L- z- u; l$ r
Commutative regular rings
! [+ ~, ^9 @( r- i7 {7 G8 GCommutative residuated lattice-ordered semigroups3 d( _2 i* U6 H
Commutative residuated lattices
5 t) ^: A! E' H  P! x+ B" P3 j  S* VCommutative residuated partially ordered monoids7 S4 J' u2 s) ?$ [1 u: J
Commutative residuated partially ordered semigroups
8 P* _) ?9 G; o" S7 v- F5 wCommutative rings/ S, U- D1 }$ u; X" p" q  _/ h
Commutative rings with identity
) z# q2 ]7 U( O/ SCommutative semigroups, Finite commutative semigroups, with zero
# J6 _4 ~. I3 P9 o- Z2 _# u/ TCompact topological spaces6 [1 E4 [8 y* ]  y" z2 L  L
Compact zero-dimensional Hausdorff spaces6 C7 g$ ~7 e& z
Complemented lattices- i2 b! X! W# _4 u; U9 J9 b/ y- N
Complemented distributive lattices
% U0 v, V9 k8 V& ~. EComplemented modular lattices1 X5 S' S8 h6 `1 V8 ?- S
Complete distributive lattices9 m) |; k/ U/ @* v9 }, i
Complete lattices' O+ I1 J9 ]1 v. S, }
Complete semilattices) G, t, D1 o0 c5 ^4 I9 r3 B
Complete partial orders; v3 c) ]  A: o4 _2 k
Completely regular Hausdorff spaces
. @. I8 F9 N/ y5 w8 eCompletely regular semigroups
* }; {# v! O) ~& Z: h) e! ]Continuous lattices) H3 D7 S  H+ Q" c! i" E
Continuous posets' r& x  X8 B$ s% ?
Cylindric algebras4 X! c0 R, d7 u" l; a% ?$ ~
De Morgan algebras
/ q) n* d8 H0 N& o/ _8 ]De Morgan monoids
. N# H1 u4 F" r* eDedekind categories3 U6 \! c( B3 i/ v+ h7 g& a
Dedekind domains  R, J/ K! d. I  s: K" ~
Dense linear orders
0 z. J3 j' j% A8 `Digraph algebras
  H% @8 X9 a2 rDirected complete partial orders
6 }7 ], A# F8 T+ q8 l/ d* H$ gDirected partial orders! d" W9 w3 O  G8 x2 j9 o
Directed graphs' j( \( y. S8 o5 I( Z4 Q5 `7 c
Directoids8 c, \0 Z5 f5 C* g
Distributive allegories3 b1 c3 c' ?4 Q- O  {
Distributive double p-algebras
# G& _* j8 M0 Y, S! g% P: pDistributive dual p-algebras5 v: K3 k9 C$ g3 L; i+ {; i
Distributive lattice expansions# |0 s: C) f9 t# U
Distributive lattices
7 u+ ^3 J" L0 D" K% p" U" ]* f9 ADistributive lattices with operators
& c5 o% d% m: rDistributive lattice ordered semigroups- T$ r( o, u/ S9 O) Y
Distributive p-algebras
. a& d9 D3 j- p9 c! \: pDistributive residuated lattices/ R+ _/ f* j9 ?& o  D
Division algebras/ }6 w& g  c5 B3 ]
Division rings) i, Y* a$ a8 I; W9 w3 y
Double Stone algebras' Y# s3 {0 ^& S9 A
Dunn monoids" e+ [$ O. I8 X  D) m
Dynamic algebras
2 V* J. P5 H* C- X9 x. k" bEntropic groupoids/ Y" A8 v, a* \0 w
Equivalence algebras
- ^% |7 d% C& b. eEquivalence relations
* X+ P! q, `: C$ s( X4 p% Z! sEuclidean domains
5 _1 H; u! @/ s; d# jf-rings
7 `  r+ i) |& [$ gFields
5 U  N6 Y8 e$ w+ b' d2 X# X; TFL-algebras/ Q7 w% }1 L& ~* l7 Y
FLc-algebras. f  y, T; Z' Z; H3 }4 p2 j
FLe-algebras
% ^3 M1 t) M4 f3 m* A2 ]$ ^' pFLew-algebras" V) U& [! f/ v
FLw-algebras
/ o* @0 j0 E& I  T7 s: tFrames
1 w+ Q0 m3 A) M( Y0 u- J6 r, q$ mFunction rings
+ S  e9 O+ C, _" X/ ?4 O/ nG-sets
1 ^- }9 ^- H4 c, \Generalized BL-algebras9 X: [0 ?0 N2 Y" _1 M6 G; S' B
Generalized Boolean algebras
$ m/ b8 q6 {! Y# Y) F# yGeneralized MV-algebras
. k. y/ p! Q; J  B: Y" F8 L0 N9 bGoedel algebras
$ ?" w( ?3 _4 h* {0 aGraphs
" P/ T: O" e6 ^/ z: JGroupoids
2 l! O! q7 o* @( o. b; p& u5 QGroups6 O( R/ m5 b, G3 P, r& F  C* t
Hausdorff spaces- q: f$ w) y. O4 A# w& `4 @6 b
Heyting algebras2 R6 R) W3 {$ g
Hilbert algebras
) i/ Z- L. L/ ~- _Hilbert spaces5 j3 C: v2 `$ \* c
Hoops
$ J" Y( L; W/ s( f7 p" @$ `Idempotent semirings
0 |( f' M2 X) ?& R! [Idempotent semirings with identity
4 M* L6 t! Y* Z2 G! P' g- UIdempotent semirings with identity and zero' q1 C5 [: R2 P, ]
Idempotent semirings with zero8 a, w* P# ~1 E% m
Implication algebras
5 _9 u8 o, a5 X( v4 lImplicative lattices
; d3 K/ v3 [5 YIntegral domains; n/ u  W6 z% ]2 ?3 y- ^! n) f: m+ W
Integral ordered monoids, finite integral ordered monoids0 [+ _( h: w' Y% z. H$ @! Z/ b' c: U8 |
Integral relation algebras
  g% b9 N9 p  z; A" T/ {Integral residuated lattices$ E' y( S0 X8 v" Z0 [8 y- e
Intuitionistic linear logic algebras. r. V- _, m- s, y9 i, H
Inverse semigroups
6 A4 F- i$ g, {1 {! x" S7 BInvolutive lattices
$ I1 [1 T2 Y0 u- UInvolutive residuated lattices
  H' V/ V' h: ~+ A( a) ~Join-semidistributive lattices
% F1 I9 x1 L2 u+ T! S2 Y+ KJoin-semilattices
2 k/ f' E1 L6 I- a: |Jordan algebras( v- |: k0 n8 k7 E" Z$ P9 M' l
Kleene algebras
5 T7 C2 K( P, d  n: u, r- iKleene lattices" z2 {% M$ Y  ~$ i0 U! P8 v
Lambek algebras+ \# {- S, H/ A: N+ j& ^
Lattice-ordered groups
0 p1 r3 D( B; e' X0 s' C  k/ aLattice-ordered monoids
5 L8 j- u4 ~/ CLattice-ordered rings
& z3 {$ ]7 w! y) O+ j& ~Lattice-ordered semigroups$ w- o( R2 U( c& C
Lattices
9 x( j) J5 T5 }0 x$ o3 mLeft cancellative semigroups1 ~9 x3 v* J/ @- x' w) }9 C2 j) f' T1 x
Lie algebras
: w7 }1 t, d0 DLinear Heyting algebras
$ a# w1 x( t/ z% J( @Linear logic algebras
* e, T8 u; \9 T' {. d5 c5 a$ W! ZLinear orders+ }' h! \; ~* @' B4 T
Locales, r0 ~: g: ~4 O. k% S
Locally compact topological spaces
1 w, B( F; e' i6 k; }& E0 g1 HLoops
* \$ D2 o8 @5 A$ C4 _Lukasiewicz algebras of order n
( f; I$ \- n1 `' EM-sets' ^6 b9 c+ s# `. H0 O7 a
Medial groupoids
& K8 W. P8 u3 a7 m% G3 gMedial quasigroups
* H- R/ m; F7 ]' y' l; X( SMeet-semidistributive lattices. V8 f$ k# m) i; r- ~3 V
Meet-semilattices
" S+ r! ]9 X4 }Metric spaces
  Y, s( ?% g- W0 V$ VModal algebras
% r: x7 E4 Z% _* h/ v6 ^Modular lattices8 D: m! x4 _3 i* k* A, y, y2 X, Q
Modular ortholattices4 o( G& [/ h5 V- A
Modules over a ring
# w9 i$ W" [; t  K6 iMonadic algebras+ P2 x4 Q4 V' C2 V2 A% o
Monoidal t-norm logic algebras
& a& z5 V: X9 v+ F0 C% z+ DMonoids, Finite monoids, with zero
! u: J" K7 a) R5 p8 sMoufang loops
- m, q5 @3 i( {# d4 }9 j5 OMoufang quasigroups9 m, D3 Z, R, v- U- y8 q  y  R0 B
Multiplicative additive linear logic algebras! z. G9 Y9 a* e1 u" `* V2 U
Multiplicative lattices
1 L) v  S: X# [/ ~) j) eMultiplicative semilattices
# V' ?( Q' e$ `) g- b% p& r/ \Multisets
5 {8 J7 K9 B' e9 L( j4 |MV-algebras3 i6 Y/ C! \- `
Neardistributive lattices
" T' O: r2 h  |) YNear-rings% C8 ~8 I( O& ?2 ]
Near-rings with identity- w1 R1 k" p7 N
Near-fields
, I+ ?. _( }6 ?0 `Nilpotent groups
; {7 M2 v- w1 Q* ZNonassociative relation algebras/ k5 Q+ x4 x1 p* f; K$ F) T
Nonassociative algebras8 s1 m+ J' m; ^, w: f
Normal bands' t# p1 f# J; T- }9 j0 m" e5 X1 c
Normal valued lattice-ordered groups
3 O( {5 g+ C# |Normed vector spaces
+ q* W: Z7 m- NOckham algebras
9 F- m2 K; T7 [& cOrder algebras4 C( ?; D( K% t9 ?, u- A8 f
Ordered abelian groups
) h  Y/ W. F, H6 }Ordered fields
+ Z( F3 \9 F1 X/ c' S5 S' eOrdered groups
" \2 f' M- e8 M8 AOrdered monoids
0 @5 u9 Q2 p9 n0 P, [4 ~9 QOrdered monoids with zero
5 B1 W/ r) V% ZOrdered rings
7 v" p, j0 c1 B4 K9 j. {0 mOrdered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero. p2 K; s# C% Q, o  B6 \
Ordered semilattices, Finite ordered semilattices* ]2 @2 q- @* r4 B
Ordered sets
7 N) L% s* a3 ]Ore domains
% o, j2 ~- N9 R* ?, d& W' _" ?Ortholattices
( ^& a8 c! `, f  S7 \4 LOrthomodular lattices9 J5 Q2 S6 H& C' ~% L3 n( f: K
p-groups5 S" q) u) h0 ]% a& j
Partial groupoids5 N& T) S, V! p- k8 w" z2 {
Partial semigroups6 o: t: M! p: G1 W4 l/ O1 q
Partially ordered groups- v2 j7 R; a  E  R" u0 i9 Y
Partially ordered monoids; C: k* M* K  c5 ~; X
Partially ordered semigroups
" L- F& b5 g# K8 Y2 u  c0 fPartially ordered sets6 C+ S8 v7 n$ P% `. ?, J
Peirce algebras- d# W7 F2 B) W- O" u  P& {6 l8 D
Pocrims
' L, T0 J4 {/ g% t! Q0 {5 o1 t8 H6 wPointed residuated lattices
, k) h. `0 B0 u; [" T- kPolrims
0 C% _( Y% z' IPolyadic algebras
8 n* C% e7 c1 cPosets/ N( t; g. z  U! i
Post algebras
; h/ @  |8 {/ Y' p- h, JPreordered sets
% U3 b3 ]) I) k9 P# R6 h' APriestley spaces
' Y5 T1 k7 C" v( APrincipal Ideal Domains+ m# ^3 r1 @) d1 P  {" W
Process algebras
0 ~2 h( T7 F) \' ^6 ~7 I: nPseudo basic logic algebras
* U2 R: o2 Z9 d7 ]' P/ aPseudo MTL-algebras
. o& U) ~/ u1 ^+ GPseudo MV-algebras
& r! r4 |/ _  L7 Q1 F' i+ q& FPseudocomplemented distributive lattices2 C, y* m$ d- ]" e/ h
Pure discriminator algebras$ U0 z$ B7 y8 P' O! H0 t
Quantales2 `/ {& H) y  g- q6 P2 S
Quasigroups# j: Y% O9 C7 a' |( w4 k9 I
Quasi-implication algebras' h* I5 A4 K8 x- @/ i! h; x% F6 E+ z
Quasi-MV-algebra1 J4 Q! ~0 ]1 O. ~" w# [8 E! y
Quasi-ordered sets
0 K( Y) o: o1 E- w8 P# g% NQuasitrivial groupoids
' l7 U% M: `; ]0 a' l. u4 Y: ?Rectangular bands* s/ i! x4 T  O  }5 ]
Reflexive relations
( k0 J3 }/ T2 Q( b0 s1 wRegular rings
) ?# _" r* P8 i5 K0 R) yRegular semigroups% {/ E# y2 u8 h- }5 k8 w
Relation algebras+ S% l1 [$ C# o* z" r6 s) u
Relative Stone algebras
# x, q' j5 ?5 X& s6 K  SRelativized relation algebras: P. ^& N: y7 `8 J4 ?9 ?
Representable cylindric algebras
/ T  }: B  Y7 y( D/ J5 GRepresentable lattice-ordered groups; W. _/ d2 [6 {" `& a. @) z3 g
Representable relation algebras
  Q/ X$ S' Z" Y* ARepresentable residuated lattices
- {) s% y  `" f- O5 u# EResiduated idempotent semirings' q, f* X& h  c) Z
Residuated lattice-ordered semigroups
& g* S* T# d& h6 q1 H5 h" g: g5 RResiduated lattices
9 `4 b$ t0 I* a+ c0 w, K+ q* DResiduated partially ordered monoids
+ a' F/ P1 w8 R, t8 t8 ?( RResiduated partially ordered semigroups
) o; N& A' h8 R; U& r6 [2 nRings) p$ d- l9 i4 N  e+ y3 `/ E
Rings with identity
, p: W6 R4 {# t/ u4 nSchroeder categories
" g/ r( Y& I* @3 Z: F" ISemiassociative relation algebras
& q  T6 \9 u& s0 DSemidistributive lattices1 s' S% H0 h( [) |
Semigroups, Finite semigroups
0 H% f. ]9 r8 Q$ ]Semigroups with identity8 ]4 F7 K" c7 S. o
Semigroups with zero, Finite semigroups with zero
1 `8 Z& |9 [7 X6 W) c% xSemilattices, Finite semilattices
" U( F4 {' O/ r. {  oSemilattices with identity, Finite semilattices with identity
  }4 }7 x! V! P- c& O% QSemilattices with zero
' c8 z5 Q% p* `& s+ H. G; tSemirings
$ V. Q' S3 k+ I: [( ?0 oSemirings with identity9 |8 I9 i' e% U- N- a
Semirings with identity and zero
' J5 _/ h" M! u0 x) ySemirings with zero/ m  x, d7 J! P
Sequential algebras' v3 x  m) T" R+ y* Z; Y
Sets7 q* e7 O/ x( Y! _
Shells/ A* K7 g3 ~" i/ W; a2 i5 Z6 e
Skew-fields  p2 D" k9 t5 v- S3 P$ k
Skew_lattices
- }7 [: H( p5 O, |' Y. E# f% KSmall categories
. V& f4 ^" P' ?Sober T0-spaces
# i9 [6 @3 }8 t2 x4 ]% j5 ^Solvable groups8 Z# n1 Y/ f8 x( X1 t* D+ u; u% h
Sqrt-quasi-MV-algebras
2 h9 ~' {8 P7 K$ oStably compact spaces
/ `/ V1 r2 l6 @, |; t- C% ESteiner quasigroups6 h1 T1 p' y1 D% j- N) u. N: O
Stone algebras3 m7 n* e* [$ j/ N
Symmetric relations
3 n6 I- j) J/ YT0-spaces
2 E3 S  ?# p2 x4 f; F0 qT1-spaces  J4 F4 n9 J1 m4 Y/ ]/ B
T2-spaces
; {1 g- }$ S9 N2 {Tarski algebras
( f* I2 J' Z8 s& N% kTense algebras
! |9 d& f* G3 p) W& P6 oTemporal algebras
1 B# I- e% V/ tTopological groups6 i( L/ t- h1 e# m. _8 {, u$ o
Topological spaces: P8 b7 `4 `* R" ~. ~5 m# D
Topological vector spaces
, {: R: g) D6 `& K1 k1 [8 FTorsion groups
" `/ O8 e) n4 V! C- c: m8 X; QTotally ordered abelian groups: t" I# K/ g/ `
Totally ordered groups2 a8 w% l; G( ]
Totally ordered monoids
; W* `7 N4 J- f# [  Z1 nTransitive relations, i4 _) V; M6 a" i
Trees
& |" Y5 P4 `; CTournaments5 c( y( y' M$ d& O: v# \
Unary algebras# v  X! v* g: @- O
Unique factorization domains
4 l- i7 k& Q# QUnital rings1 R: @  _1 J- x$ i. O
Vector spaces" B3 @) z4 |/ \! L
Wajsberg algebras5 b# t  X8 S/ b; G
Wajsberg hoops5 A' u$ \+ f( |  q' K
Weakly associative lattices
  P. N. s% i3 \& QWeakly associative relation algebras; X6 t6 {+ {& t  u. S7 P$ K
Weakly representable relation algebras
6 C& i7 q0 T) Q* v5 l5 {3 i$ |
作者: lilianjie    时间: 2012-1-12 13:20
阿贝尔群Abel群7 G; o( s& G; N0 e  o
阿贝尔格序群
  S9 F) R( \* Y; n, J+ F- f阿贝尔下令组1 m9 E9 Q# y" Z  o" Q4 C
阿贝尔p -群
, w7 s1 v  ^/ {阿贝尔部分下令组8 K" q7 j; K& I, x
行动代数行动代数+ l) j$ ?) I% L3 v( ^/ L1 Y
行动晶格) X7 O# ~* y) c0 E  M5 x1 c9 }+ y3 t
代数晶格& z2 k" {) z5 J9 z9 \2 }
代数偏序代数偏序集
; ^4 R  Z0 q) ^9 H代数半格
- S$ \& ^" ?9 ^( ^寓言的寓言(范畴论)  p* G: D2 i& s+ I
几乎分配格
8 b! x& V7 x2 W8 ?) W3 P" w# b关联代数关联代数
9 H0 k% T6 a3 |# tBanach空间的Banach空间
5 C& l% F) E* m" e# D1 M8 V8 b/ r乐队乐队(数学),有限频带( [9 Q" c! O8 x3 h* n
基本逻辑代数' C6 B$ W6 k# x( H& i% f
BCI -代数的BCI代数
/ Y6 L5 I# Z" QBCK -代数BCK代数
* j* A: b- z* Z3 nBCK联接,半格
* |( s, e, r8 L% \6 WBCK晶格" E9 m5 b7 W/ P& I+ j
BCK -满足的半格
' N6 t7 I. m0 \3 k  f5 D$ S, L2 ]双线性代数
, w; D" W( ^3 D7 mBL -代数
7 @8 n* |* e" ~/ dBinars,有限的binars,与身份,身份和零与零,. b% L8 ^( L* J7 ^: h
布尔代数布尔代数(结构)! _: v: i% X- V
与运营商布尔代数8 G: L# k: u9 o7 S- q: x* ^6 e8 n7 O
布尔组) I/ E$ A! H# e% ]. N
布尔晶格
, e) S8 t; T/ ^) f; l3 X) J对关系代数的布尔模块
1 z5 b6 ?: Z* h5 ]5 K0 M. V  Q$ {布尔半群
% C3 x$ Y0 x# V  y  Z" T布尔环, _0 M( R0 M. D
布尔半群( O+ }: _  s; B' m. x1 t5 d  [
布尔半格( H' ^' a) F3 G1 m% w$ Y% P
布尔空间
5 D, M( X3 t6 C2 U% h$ G  ^" C有界分配格
3 ~3 R  ^6 o9 w' b! y界晶格
8 ?3 E2 Q& Y! Z界剩余格
0 u2 a$ ?$ \* D/ |1 xBrouwerian代数3 Y0 Q8 M7 e- S: h8 O" s; L9 L4 d
Brouwerian半格8 o4 _" c% z! \& w
C *-代数
: m* V  K% ?% Z# Y4 r. ~1 Y* Y消可交换半群9 B( p, {5 }/ h, e" A
消可交换半群3 X& p0 v' w" B$ x" T
可消半群6 D$ l1 T$ B+ n3 p! A$ M
可消半群
2 C1 V' g4 k  {1 Q; x2 c消residuated格
$ A, k0 B/ E. V$ B分类
6 J6 M( d- l& o. X$ m7 D9 q
0 a% }! |9 s' i: b6 |% w; U克利福德半群7 d! ^+ K* D& B, K: Y5 \
Clifford代数
; b5 E7 M& z' \5 s! G  f7 Y封闭代数
; v9 e3 c3 P) m4 n可交换BCK -代数
/ c4 j6 |& Q- [交换binars,有限的可交换binars,与身份,零,身份和零* v& A. ?& I* ]% C
可交换的组成下令半群,有限可交换积分下令半群- b) U" v& x- o" R. Z* f
交换逆半群
  `" v% S5 a3 }' L, K6 o交换点阵有序的半群
9 d% ~2 _6 S0 K( k" z9 |交换格序环
- t2 t: ]' K6 Q) L% X  ^0 V- [交换格序半群" c7 k  L+ f& y, A' M! _* r& m
交换半群,有限可交换半群,零的有限可交换半群
- v3 P( i' q9 J( a4 T9 O. d4 W& v交换下令半群
% X! }# ]6 |- Y! s% s交换下令戒指
, c) {2 `. X/ I' V1 k有限交换交换序半群,序半群
; |6 \: R0 X/ O) t$ _4 \0 c, f可交换部分有序的半群4 [  M. a# z2 O& N
可交换部分序半群
" H9 f$ I0 k* z5 f: U交换正则环6 R8 T1 u& u8 Q/ O- \. ^
交换剩余格序半群
5 k8 ~& Q8 n/ A4 P交换residuated格
% y2 P) q' G. ]" g% S* Q1 i. W可交换residuated偏序半群6 F9 ~- i4 Z/ b1 x/ l8 m! w+ V2 k, q
可交换residuated偏序半群
9 C/ J" p9 h6 q1 ?* O交换环& V$ M" b0 [5 n* H/ I1 K
与身份的交换环
! S6 ^& i. ~- N4 ~: F; ]9 y交换半群,有限可交换半群,零/ U( b" w* f- H9 @
紧凑型拓扑空间3 \# _) N) {; L* C# |
紧凑的零维的Hausdorff空间
8 d# o+ b7 ?( P, D7 ?* R补充晶格7 b; K4 @* [) O) k- |- z
有补分配格
0 w8 ]9 N: x- }$ F' U/ J补充模块化晶格( l" y, `3 V1 u) ~5 \. b4 K
完整的分配格1 l9 n2 b, b& n( B6 A  s9 D/ `$ X
完备格) i8 J# f) |( B: d& f
完整的半格* x: f' P. e% W5 W
完成部分订单
+ Q' S1 T* _- H1 D& @完全正则豪斯多夫空间, `! @& V0 L9 B7 S3 t# L5 {& l: g
完全正则半群
* j2 z2 S4 T2 C' J; H1 a  L1 [8 v连续格5 O+ R9 t5 d" D7 s
连续偏序集
+ h/ _/ S$ V* Y柱形代数
1 O, L' t% _, L2 h& {0 T德摩根代数
3 c6 }2 p& x) `0 r* V% \3 ~2 D德摩半群7 G8 l( q9 }) C+ d6 p
戴德金类别( I1 Q; f/ D: k/ v6 `
戴德金域
+ S4 T1 E% A3 y稠密线性订单" O7 F8 M! R9 o3 |2 f8 p, ^
有向图代数$ I1 V1 E. d" m! Y, r: z, B
导演完成的部分订单8 T. q7 e9 O! n/ ?
导演部分订单' i- K  T6 J2 X2 l  [2 I/ q
有向图
( C. g" n2 \+ k, [Directoids
3 @! u; A$ v$ ]' C  ~分配寓言
1 o: C2 ^- s$ K! m1 b分配的双p -代数
  J% e1 t9 ^6 f1 ~分配的双P -代数
- K- }4 l/ v* ]4 Y/ l7 w0 l- A分配格扩展1 R& D* w: N6 }9 n2 z. t0 b# X2 B
分配格
7 W& L8 e2 i  A& C与运营商分配格2 r) e0 ?, |% x" l0 g
分配格序半群7 f: }  t( z* N) u+ {
分配p -代数: i$ Y4 ]; ]% u7 i5 m5 ]# T5 B
分配residuated格0 s/ c% r, m# M6 R( A
司代数0 t) |$ L4 d6 T8 \  c2 V
科环* P4 }' G+ j8 Y3 D
双Stone代数
' D3 |' z( l% G! [* ]: C邓恩半群8 }% h0 y# A3 V) T# V0 O1 J
动态代数
+ S8 f% N$ C! m, _. p) {熵groupoids
& G! J- t, Q: b) V4 R  H4 c& ?等价代数3 Q* i3 r- \! r' T1 L- l5 y
等价关系
1 s0 H% {+ S, @欧几里德域/ x$ G( J( c# i. W! |9 h, U& }6 J
F -环
4 C9 J& i+ G( s- e  g5 Q6 I字段  r( V, N8 H2 i$ U) a+ H5 F
FL -代数
$ o/ B& r& P$ {FLC -代数* N. p+ L+ r/ T+ @; D, P8 H0 S
FLE -代数
. w% y1 s9 i0 O. K. Z/ l飞到-代数
7 Q" w4 a+ Y: M- p6 jFLW -代数
# E4 S* @. n/ s0 b* d9 T0 ]框架
; s2 Z0 M8 U6 l( m功能戒指
8 W2 l! r1 z7 Y" jG - 组# E* z- D0 V4 z* R
广义BL -代数
0 d7 y; q" D) `; a2 O8 F广义布尔代数
3 V5 `6 w6 \  s3 z. e广义的MV -代数
7 k- r$ T  d3 t- ?$ q$ K/ G( NGoedel代数
0 s7 ]6 ~% F8 ]1 n0 Q: ?" o
' z/ Y, |3 U9 ~$ J- A  VGroupoids, h* H  B/ s& [0 X: ?) l

/ g4 ]  _! l0 w豪斯多夫空间$ ~  Q2 ]) }! t+ z! r+ H( B$ [: `; u
Heyting代数2 P$ D% u% k& I3 k
希尔伯特代数& c0 g! C8 U" Q4 S1 R- Z+ u( }
Hilbert空间
, a& x4 Z9 Z* A! m% b篮球
5 z7 O% ]: i% a$ u. v幂等半环
# e1 Q) J" K: k# S$ ~8 I3 g; t幂等半环与身份
& Y" c$ n2 j8 j幂等半环的身份和零
0 U! m( X8 n7 |4 ~- E8 V幂等半环与零3 n! y0 ]9 `5 i& T7 p8 P
蕴涵代数$ l! c; H+ I2 E& u. N
含蓄的格子$ [- |' I9 A; c0 ?' b' F  U+ _+ P
积分域
2 J  J6 b1 p- Y/ }1 _- L积分下令半群,有限积分下令半群
; x* j2 l. f3 G0 b, K) r+ \积分关系代数3 \( u# u9 f8 A" v# ^. y6 g
集成剩余格
/ {/ D/ k  Y$ e" h9 c- f5 W  Z直觉线性逻辑代数
# g* O7 Y; S* [( ~逆半群
# ]7 [4 @2 z5 P5 d合的格子( E% c' E. E+ I% Q+ g/ ^, }
合的residuated格) t7 [5 \& P! y. I5 D% E$ ~
加盟semidistributive格4 K, I4 S1 w9 Y# y% E4 J$ a
加盟半格
4 g- h4 w2 `* v7 i6 C6 B约旦代数
* J' N: ^7 }9 N" @+ q& D$ q克莱尼代数
, C% q' G. X  ]. k  }% T% d0 z克莱尼晶格
9 ]7 T7 R/ j  v- R) J3 }Lambek代数( C  M9 @. q9 j# x& |% i
格序群
, O" v* @( L* B' a1 K! l9 b9 Z/ L+ J4 c格子下令半群
+ z3 o) @$ E2 \9 N格序环
+ A  G/ J5 O2 [8 y' D6 Y格序半群
& H* m! Q& _0 v: r: ^8 q4 O$ w/ O
( W1 }2 Z+ O2 \  i" w* Z. c左可消半群
! W3 C  Z: y1 c0 R李代数: _5 J- b: s8 \: o/ T3 s
线性Heyting代数$ P0 q' ]5 \+ @$ Q, }  b
线性逻辑代数1 S4 [6 o9 ^2 w& ^% J6 N) @4 w
线性订单
( M2 h1 I  h5 ^. p1 h0 W语言环境
' I5 W+ c7 N' [: ?局部紧拓扑空间
0 o  a& i4 P4 g+ v7 V循环' G! V5 W" X( I6 _0 z) K
n阶Lukasiewicz代数
( S; c. R; _  b3 a* lM -组
0 c. B% x$ w6 }: L1 }内侧groupoids
% ?4 @) M# m2 j. N) X内侧quasigroups
; n3 z  S: C$ Z, v会见semidistributive格
# R1 c+ N8 {  r! E; f会见半格3 ]0 b6 o4 ~3 O7 S0 m* @" a
度量空间5 X: n5 d% F  O" v% u. z5 d' x- l/ [
模态代数, ~5 A) z/ E1 g  V% f
模块化晶格; O4 V$ x1 U6 q6 [( Z
模块化ortholattices1 w! J# q( J% t% m2 N0 c) u% L+ C( U
环比一个模块
& W& \! c  }) o7 T& @" M2 M# Y, _单子代数
! j! Z' P# P* H( x; V: Z/ @Monoidal t -模的逻辑代数
$ `9 N+ v7 D2 d1 l幺半群,有限半群,零
' |" w! s6 k4 GMoufang循环" v+ C4 ~' p4 {* R1 s
Moufang quasigroups
. d2 k1 q$ W& h乘添加剂的线性逻辑代数
* V7 @+ M" j# k  M  x乘晶格
3 k& v5 a! H  @9 h乘法半格1 K. |# G! Y7 V/ I4 J8 a6 a
多重集6 o4 @( D# j+ c$ J- v+ K+ S
MV -代数/ G$ X- U/ [3 s* u* s
Neardistributive晶格+ z) q! s$ O- v! J
近环
8 f4 _# v: k! }* t" S近环与身份& S9 c9 O4 Y9 S& [' p1 B" N6 i
近田
9 c# Z- x! V) o# N* v# U' Y; b8 b; V幂零群
3 A* H3 i5 Z/ N. x7 I- Q" I非结合的关系代数
5 w( e& N# `: [, m) T非结合代数* M" H/ j  F  H, Z* @
普通频段
, o3 Q6 \& K( C7 K; e正常价值格序群
6 F1 H( ]$ a9 s6 g8 P( e; g7 m* m赋范向量空间
# K3 e2 Z% B  @0 S$ X; G奥康代数2 b. `0 U  }4 Z2 M+ D: }* z7 j
订购代数
- r* y8 K( [* u: q! o5 [, D- z有序阿贝尔群
3 t6 E' S: {" Z+ \/ Y有序领域/ ]7 t1 i# {  h& c8 U1 V
序群
" d" h* f( L/ R% p5 c有序半群& B0 P2 A& w6 X8 \3 p. s
与零有序的半群
" l" y3 a5 I+ d有序环
3 S  ?3 }, H& p$ I9 ?序半群,有限序半群,有限下令零半群9 t+ I% e6 G0 W9 o/ P" S
有序半格,有限下令半格% y- s- E2 _' Y( {- v& O! z
有序集
( A1 \* b+ b4 H4 q矿石域6 Y  v/ j1 K. d8 j
Ortholattices
: c- V6 W9 O& ]$ E7 p8 `% c正交模格
/ X! E: U" @9 p: h; Y& Q- _  Ap -群: }) Y$ y& |5 P
部分groupoids8 o/ z9 t" i2 N: b: m: ~& ?
部分半群4 B1 J& D$ _/ }2 e5 t$ n0 Q( e
部分有序的群体4 I: }8 r, N8 k8 W
部分下令半群
; e) q. i( N4 o0 f% R, c部分序半群
6 F7 c' a; x# x部分有序集
& p" {, Y; t! \9 {+ ]* m皮尔斯代数
+ }. }, C* F2 v( V# I: u' O7 rPocrims/ [6 T& b+ l2 j% p/ p
指出residuated格6 ?# @! O, X6 E! i3 Y. t
Polrims
5 c( Z/ B# Q6 Z, l6 E' [, ^) RPolyadic代数
6 \2 F- _7 T0 ^7 H$ Q" h偏序集4 X4 \! [" j% d
邮政代数
7 f0 Q% i) B+ @% Y3 LPreordered套
  p: G# c. ~( k; ~0 a" L" G普里斯特利空间
+ P' }9 [  k" F- }, C主理想域
; |1 k- m, [3 B' k$ I  x0 Q进程代数+ s$ I. }4 _7 M. M' b' B
伪基本逻辑代数* q9 G5 ~- N: T( F' U! _  ?% i
伪MTL -代数" U; n8 g, C; s' R; T4 L
伪MV -代数& C- y+ b# `) i* A" q) E
Pseudocomplemented分配格+ V7 v7 ?. g- A/ {2 K
纯鉴别代数8 t, Q4 S. i. q# [; }& G4 o& L" \+ P
Quantales) q: d( C9 k) L2 G$ E- s: m$ q6 c% B
Quasigroups
6 W* y% q/ `0 _2 z$ o. X准蕴涵代数' Y7 Q" i- Q) d1 p; [+ c/ m- L
准MV -代数
2 U4 @4 U  J, ]8 y6 [2 L/ O准有序集4 o: {/ _) n7 Y) Q$ a* r0 |2 r! r! z
Quasitrivial groupoids# P/ Z+ A/ X3 C8 n
矩形条带, \* u% `1 r: X' @
自反关系
2 E, y/ Q; B5 T1 d0 i' W- y正则环
5 ^* F% l6 B9 g4 u& P! s2 y6 M3 C# c正则半群  x" x- E8 ^1 _5 h: A- K
关系代数  H( e, x  h0 G* V5 A
相对Stone代数3 c( ^, C% ?/ z6 U9 j
相对化的关系代数' x/ V- q, J2 [* g1 R: \1 }8 l
表示的圆柱代数
) M6 u; s' Q% |' W) w4 O1 c$ K表示的格序群体  j0 \' b2 \7 C5 h3 S2 ^
表示的关系代数
# ], c! p! \; ]- B; d+ B表示的residuated格' u, p1 K1 b+ D' i! p: \4 X
Residuated幂等半环
- T2 P% o$ M% g1 E  T2 d  |9 I( K剩余格序半群2 R: i! y2 _3 L9 l9 v- s* o
剩余格
; R. j' _4 E* U6 W1 XResiduated部分有序的半群
) t/ {& A% ]  D# w$ o4 x) \Residuated部分序半群
- g9 w: p3 r. b& w( `戒指' T7 k1 Z1 ~8 M5 V+ E6 K, X# F
戒指与身份
; z7 a3 S! y0 g8 B  b. F施罗德类别% A+ W3 N; ?9 Q; a
Semiassociative关系代数( Z; A5 g" u9 j4 D( G1 D# ]
Semidistributive晶格
1 u2 m; u9 x- L" X半群,有限半群: c) k4 z, P& ~+ `7 ^
半群与身份3 _7 B9 {+ b' t! Z+ a/ Z" I
半群与零,有限半群与零
6 U! M0 n# B  U半格,有限半格
$ J, \* `6 J* Y( _* V6 @与身份,与身份的有限半格半格  p, s, K9 J% U9 X' D
半格与零" F& @* Y9 q- r. j% Z) Q1 s
半环- W& i; t/ F# ]7 h# `- U
半环与身份
1 a7 B& ^' G4 P半环与身份和零# F3 S  c2 Y  S$ {
半环与零
. Y* E% P/ z5 s7 x8 g' ]0 o连续代数
+ c# H1 F; `% r8 Z: j, i4 D3 D9 |
7 r4 [% b2 F  N5 N4 y5 I2 U
歪斜领域
; Q$ z9 q4 b7 L, U2 b+ X2 MSkew_lattices
6 S1 y' M) V7 Q3 u: R# ?+ _% b小类
9 H0 O/ `* e( L% f( a" S7 k清醒T0 -空间+ |1 v* y7 x, H. M$ P' [
可解群
! z" k/ t! |1 s6 m0 oSQRT准MV -代数
1 i( `7 u, [$ b3 J4 m稳定紧凑的空间. B. O( z+ K; F6 X1 M& b3 w
施泰纳quasigroups8 T3 o) Z6 H, ?% F: z8 c7 z& V
Stone代数- |. b& D4 U' }2 b
对称关系# Z& ]& ]% J0 e3 [1 z" T3 p
T0 -空间+ w) x0 M3 A7 q. u; A1 J; u
T1 -空间
* v' ?' \% Z9 e4 Y5 j5 I1 }T2 -空间! m0 Q# g! Y3 W4 g. S5 g' G' N
塔斯基代数: P6 w  O& M9 {( [0 F6 [& _
紧张代数4 i2 @- E' f! v, |, j9 O
时空代数
3 ]. [+ N1 k' h; V拓扑群
1 E3 |4 ]# C: l! c" a# P) @拓扑空间; B7 p  H# x/ Q9 r' L
拓扑向量空间
& F1 x0 z/ E5 A扭转组4 m" l  r* z2 \) e& e
全序的阿贝尔群" p( M+ n' c% W: W* [6 Y. Y6 [
全序的群体8 g$ a! a1 z& x5 y9 Q2 \% @/ ~2 R
完全下令半群
" L1 q1 B7 c( H. a* l# l* BTransitive的关系/ T( B# T! Y& j  Z" Q

: z1 y& C8 k- K0 t锦标赛) W' {0 m  W; P
一元代数  J& R4 z6 f+ q
唯一分解域
2 ~7 m# Z' t1 d8 V5 `: w# x7 s4 hUnital环
& ?5 ^+ b& ?" I# M% A- K+ \# p* `向量空间
& o& I; y. a* Q9 oWajsberg代数
2 N4 l% v4 ~. U; O. P2 cWajsberg箍
/ b5 [* u2 O! F$ V& C0 G弱关联格
, A6 D- E2 a$ S8 c0 k" ?弱关联关系代数
% E" [: d8 D' A3 K弱表示关系代数
作者: 孤寂冷逍遥    时间: 2012-1-12 17:03

作者: qazwer168    时间: 2012-2-6 09:42
佩服你,能发这么好的帖子,厉害
作者: ZONDA    时间: 2012-2-14 14:02
谢谢楼主啦




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5