! n4 g+ x1 l+ B) f) D( @ 关 键 词 ) D! Q5 I. T4 n! y$ Q 智能PID,双模糊PID控制,自适应神经元,模糊神经,温控系统2 r) C3 C* l) Z, O5 ^+ T3 N) v/ Q / O q# ~6 t t: U. p% \: B7 h1 h ; r5 I3 x3 H. E+ H
摘要:
! Z6 e: k8 K& y( h 对温控系统的自适应性进行研究,针对冷库制冷系统的数学模型未知或难于获取、非线性、大惯性、不确定时滞以及时变参数不确定的特点,设计了自适应智能PID温控系统。本文设计的温控系统能够充分发挥模糊控制和神经网络的优点,通过对PID参数进行在线整定,达到良好的自适应效果。
% x; i r# r( T 在不建立被控对象数学模型的情况下,模糊预估器通过对过程未来输出的预估作用,补偿被控过程的惯性和滞后对控制系统性能的影响。模糊控制器对被控对象的时滞、非线性、时变性具有一定的适应能力,同时对噪声也有较强的抑制能力,鲁棒性较好。模糊控制器本身消除系统误差的性能较差,并且规则的选取困难,而在本温控系统中经验知识是难以描述的。自适应神经元能从数据样本中自动改变模糊变量因子,从而修正模糊规则,而不必利用领域知识。自适应神经模糊推理系统(ANFIS)能直接对误差、误差变化率以及控制器输出进行学习产生较优的模糊规则。
本文对自适应双模糊PID控制模型、自适应神经元双模糊控制模型和自适应神经模糊推理系统PID控制模型进行了建模和仿真。仿真结果表明,合理的基于神经和模糊的自适应智能PID控制器,既能发挥模糊控制鲁棒性能、动态响应好,上升时间快,超调小的特点,又具有神经网络所具有的自学习、自适应、容错性和并行性相结合的一种方法;同时有PID控制器的动态跟踪品质和稳态精度,取得了较好效果,具有良好的工程应用前景。
[attach]4081[/attach]
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) | Powered by Discuz! X2.5 |