数学建模社区-数学中国

标题: 克莱因瓶 [打印本页]

作者: 彭小玉    时间: 2014-10-10 21:57
标题: 克莱因瓶
在数学领域中,克莱因瓶(Klein bottle)是指一种无定向性的平面,比如2维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。克莱因瓶的结构非常简单,一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它也不类似于气球 ,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。6 x" |3 E- b- P2 E; c8 h' ?
数学中的克莱因瓶(Klein bottle)是一种不可定向的闭曲面,没有“内部”和“外部”之分。克莱因瓶最初的概念是由德国数学家菲利克斯·克莱因提出的。克莱因瓶和莫比乌斯带非常相像。
# S8 A4 o5 a7 s% d4 T! L0 y' T6 M9 t# P- n- P
克莱因瓶在三维空间中只能做出“浸入”模型(允许与自身相交),比如:一个瓶子底部有一个洞,延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结,它也不类似于气球。一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(所以说它没有内外部之分)。
& m# Z5 N% `. O“克莱因瓶”这个名字的翻译其实是有些错误的,因为最初用德语命名时候名字中“Kleinsche Fläche”是“克莱因平面”的意思。大概是误写成了“Flasche”,这个词才是瓶子的意思。不过不要紧,“瓶子”这个词用起来也非常合适。% r% v2 Y# u- H) Y
! i5 N& [' d4 e9 @% c
在1882年,著名数学家菲利克斯·克莱因(Felix Klein) 发现了后来以他的名字命名的著名“瓶子”。这是一个像球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就像是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面(即环面)。3 p+ b4 g- ~, N# b* ^2 E/ n$ q/ ~
+ d( O8 ~+ F9 d" h( ~6 m" m
在数学上,克莱因瓶是一个不可定向的二维紧致流形,而球面或轮胎面是可定向的二维紧致流型。如果观察克莱因瓶的图片,有一点似乎令人困惑——克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。
) M+ W( ^) W$ H; z8 x' U% I
0 V# \9 L* \: O2 W' I7 d事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面。如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。用扭结来打比方,如果把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线。它并不和自己相交,而是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好像最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。如果莫比乌斯带能够完美的展现一个“二维空间中一维可无限扩展之空间模型”的话,克莱因瓶只能作为展现一个“三维空间中二维可无限扩展之空间模型”的参考。因为在制作莫比乌斯带的过程中,我们要对纸带进行180度翻转再首尾相连,这就是一个三维空间下的操作。理想的“三维空间中二维可无限扩展之空间模型”应该是在二维面中,朝任意方向前进都可以回到原点的模型,而克莱因瓶虽然在二维面上可以向任意方向无限前进。但是只有在两个特定的方向上才会回到原点,并且只有在其中一个方向上,回到原点之前会经过一个“逆向原点”,真正理想的“三维空间中二维可无限扩展之空间模型”也应该是在二维面上朝任何方向前进,都会先经过一次“逆向原点”,再回到原点。而制作这个模型,则需要在四维空间上对三维模型进行扭曲。数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,克莱因瓶和莫比乌斯带变成了拓扑学中最有趣的问题之一。莫比乌斯带的概念被广泛地应用到了建筑,艺术,工业生产中。8 U1 P. x- o- B1 u
4 s6 O3 s2 N& t5 _. n$ k% y

# ^: }7 w( c4 j5 N5 f拓扑学的定义% }2 g/ _( M" [+ p, E+ S6 f" N* `
从拓扑学角度上看,克莱因瓶可以定义为正方形区域[0,1] × [0,1]模掉等价关系 (0,y) ~ (1,y) ,0 ≤y≤ 1 和 (x,0) ~ (1-x,1) , 0 ≤x≤ 1。
4 {8 [) r" A2 ~* d2 m( D就像麦比乌斯带(又名:莫比乌斯环)一样,克莱因瓶不可定向。但是与之不同的是,克莱因瓶是一个闭合的曲面,也就是说它没有边界。莫比乌斯带可以在三维的欧几里德空间中嵌入,克莱因瓶只能嵌入四维(或更高维)空间。
% [' a8 C& B# M! m( V
作者: 深V礼    时间: 2014-10-11 10:55
楼主,干的漂亮
作者: 郑可心    时间: 2015-2-1 18:15
+ s0 L/ L9 I/ G" K; h
+ z0 Q0 y! y& O# P

, c0 }; i/ h7 u学过拓扑的表示还好了
8 F/ N. _8 [, R; Q# I0 D# f
作者: 非常数123    时间: 2016-7-23 08:06
本帖最后由 非常数123 于 2016-7-23 08:09 编辑 * f0 W& V5 }5 t8 L3 @) f
% I, z9 R* \0 w- J! Z9 ^" y* q7 |
那 实射影空间(real projective space),记作 RPn 之二维 如何呢是一个不可定向、紧致、无边界二维流形。& I3 O7 N6 u( f; a9 j. j& W' x
如果能把莫比乌斯带的(一条)边以恰当的方向黏合,将得到射影平面。等价地,沿着莫比乌斯带的边界黏合一个圆盘给出射影平面。
由于莫比乌斯带可构造为将正方形的一组对边反向黏合,从而实射影平面可以表示为单位正方形([0,1] × [0,1])将它的边界通过如下等价关系等同:
(0, y) ~ (1, 1 − y)  对0 ≤ y ≤ 1 ,
以及
(x, 0) ~ (1 − x, 1)  对0 ≤ x ≤ 1,
即如右图所示。 RP2
% Y$ ~% c( d  {5 F3 t  L





欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5