数学建模社区-数学中国

标题: Springer2013新书 微积分及其应用Calculus With Applications(2nd ed)Peter D. Lax [打印本页]

作者: 风中的漂流瓶    时间: 2015-4-11 14:30
标题: Springer2013新书 微积分及其应用Calculus With Applications(2nd ed)Peter D. Lax
微积分及其应用(第2版)Peter D. Lax, Maria Shea Terrell, ''Calculus With Applications, 2nd Edition .pdf/ o* d* a" W- M
5 v3 M( x. Y- b* \7 N

# L, P5 i' b, e6 ?& L. ~- P! z【作者介绍】美国纽约大学与康奈尔大学两所著名大学的数学大牛联手为本科生打造的教材(包括复变函数,微分方程,概率论),其中Peter D. Lax 可谓超级数学大牛,得奖无数。
) R7 z) C  @: P5 Z; \
; A" z8 F: e) LEnglish | 2013 | ISBN: 1461479452 | PDF | 516 pages | 6.87 MB
0 Y% Z7 }: H0 l" B) C' f+ K$ l; N, L& v) P
1 Numbers and Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- N& R2 @, t2 q
1.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
- U* a9 D; m! v0 ]0 N1.1a Rules for Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 P, v: G# q1 Z' c4 R& p3 {( z" H8 N
1.1b The Triangle Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 ]! d& ~+ @9 j1.1c The Arithmetic–Geometric Mean Inequality . . . . . . . . . . . . . . 5
' R( O& t. l& y8 J6 s* U1.2 Numbers and the Least Upper Bound Theorem . . . . . . . . . . . . . . . . . . 11
' a! i# T1 i  n6 X0 d- F9 {1.2a Numbers as Infinite Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . 110 k/ u8 G* w/ X$ `' z* J& E. w
1.2b The Least Upper Bound Theorem . . . . . . . . . . . . . . . . . . . . . . 134 E% L* C/ l/ y
1.2c Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16. ?6 C7 o. o: e: X2 q" u# ^# X2 w
1.3 Sequences and Their Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0 x  D5 C/ n* ^1 _0 Z' g1.3a Approximation of! K. C1 A! `- x
5 z2 |/ E5 K. k0 @
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
  Q- J" r# S- T7 x( h7 W1 G1.3b Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24* i' D# l* L( C: E1 V6 B
1.3c Nested Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
* q7 S/ w. |$ j/ Q1.3d Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
. g" a& v2 C: w" K& b' e) J1.4 The Number e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44: d& V. }4 e7 D$ U
2 Functions and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 i5 j8 `0 N& F! X2.1 The Notion of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
( }/ b9 j# x. q9 E% G* v: @$ C2.1a Bounded Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
% _+ t9 f/ {# a) }2.1b Arithmetic of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55& Z8 R9 u9 ]" y9 @: @% o! b! {
2.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
$ G" T9 V, y4 p) U& Q2.2a Continuity at a Point Using Limits . . . . . . . . . . . . . . . . . . . . . . 61* {: S5 h- Y" l4 l- I- L
2.2b Continuity on an Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 L3 h. ~0 I& X+ G; B, n
2.2c Extreme and Intermediate Value Theorems . . . . . . . . . . . . . . . 66) F9 }) I6 }2 k2 N9 h
2.3 Composition and Inverses of Functions . . . . . . . . . . . . . . . . . . . . . . . . 71/ W6 f! J* u! _
2.3a Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  z8 R5 i4 |( D; m
2.3b Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
. g5 Z8 ^6 Q2 k  o3 o6 {2.4 Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
' F! x2 O, B" u9 z' R, R+ o5 [( h2.5 Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  G% a! h) V0 G( q1 G
2.5a Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 X8 k5 D% f0 z- g; s( w2.5b Bacterial Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87: g; J0 K5 j  N: `! |
2.5c Algebraic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 U- ]" ~3 v. e: U
2.5d Exponential Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89" u# W5 e% }$ Y* w! i1 q
2.5e Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 V$ _: N3 ^' u, i' r' p: l1 C
2.6 Sequences of Functions and Their Limits . . . . . . . . . . . . . . . . . . . . . . . 96
. Y+ y4 E  ]. ^4 F& e2.6a Sequences of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
- M8 M4 |0 A! K9 Q* e. R, j) ]2.6b Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103: U2 U) Q  G0 @' R. A+ U3 i* A
2.6c Approximating the Functions6 M3 ^- c3 d3 D  K. b: A+ o( q! W
; t1 i" R" _' x, M2 z# D, D
x and ex . . . . . . . . . . . . . . . . . 107; A; ?7 M; k, T% @$ e8 u9 z8 U
3 The Derivative and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179 v8 b0 y6 R2 C+ l" }
3.1 The Concept of Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
* o+ r8 ]1 ?1 o3 |+ N: V3.1a Graphical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
) _" t- [/ f  p3 m# H: e3.1b Differentiability and Continuity . . . . . . . . . . . . . . . . . . . . . . . . 1235 T! Y/ c1 O& n0 _# [% r
3.1c Some Uses for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 125
: ]% H; l' e  d. k5 D3 Y3 G3.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1 L+ x& R& _* @3.2a Sums, Products, and Quotients . . . . . . . . . . . . . . . . . . . . . . . . . 1337 _) h" C. Q  T( C
3.2b Derivative of Compositions of Functions. . . . . . . . . . . . . . . . . 138
2 y4 B+ d. I' p- v2 _9 n3.2c Higher Derivatives and Notation. . . . . . . . . . . . . . . . . . . . . . . . 1413 ?7 b5 W  j0 h& P* f
3.3 Derivative of ex and logx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
- U! ~: Y4 X6 J3 X+ z4 B3.3a Derivative of ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
$ l" X3 U! ^! X. J4 t3.3b Derivative of logx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
* T. ]6 t: T& X. z3.3c Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3 [' z$ b. P' P, T1 Z- b7 i3.3d The Differential Equation y = ky . . . . . . . . . . . . . . . . . . . . . . . 150" m/ k: k0 u, e% f$ x4 N# _1 ~
3.4 Derivatives of the Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 154' l7 q2 D4 m/ F5 S2 E( ?8 E
3.4a Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154& P1 Y* {9 [# X9 F0 J1 x6 n8 R
3.4b The Differential Equation y +y = 0 . . . . . . . . . . . . . . . . . . . . 156
" A: x( q/ U) V/ q3.4c Derivatives of Inverse Trigonometric Functions . . . . . . . . . . . 159
8 n1 U. s  x  N4 U% g( }  k3.4d The Differential Equation y −y = 0 . . . . . . . . . . . . . . . . . . . . 1616 c$ l1 }3 H* }4 Z* ]6 w, ^
3.5 Derivatives of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665 d' N& G: s$ g4 M% A8 i
4 The Theory of Differentiable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
; ?. N: g; v( Y) o- d4.1 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 @& _0 w- ?) j
4.1a Using the First Derivative for Optimization . . . . . . . . . . . . . . 1745 H! U' G. p) k7 z% o! N! \
4.1b Using Calculus to Prove Inequalities . . . . . . . . . . . . . . . . . . . . 179
  c6 v: J0 k+ O6 ?) H# u1 ]4.1c A Generalized Mean Value Theorem . . . . . . . . . . . . . . . . . . . . 181
8 m& @1 ?4 F" i) U+ ]4.2 Higher Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
; Y" ^) U1 `/ t4.2a Second Derivative Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5 G1 g- ^8 Z2 w5 `0 `4.2b Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1927 R. D6 v" |! ~
4.3 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, c3 S: K! h8 T" z9 h' _
4.3a Examples of Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
$ d0 @6 j  T- J& B. ]. H* B4.4 Approximating Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5 L% q5 e" \1 j  r9 z; B5 Applications of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217) X7 f& e" }, |& }
5.1 Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
/ t, u0 B: E# X1 b1 o. x  M6 b5.2 Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7 A" z5 \% F8 T; B# n5.3 Newton’s Method for Finding the Zeros of a Function . . . . . . . . . . . . 225  ~8 l1 u+ |" d3 [
5.3a Approximation of Square Roots . . . . . . . . . . . . . . . . . . . . . . . . 226
# S! ?6 o& J( m0 Y  v5.3b Approximation of Roots of Polynomials . . . . . . . . . . . . . . . . . 227
# _: y* `; `* {6 _+ ^5 s% o3 o5.3c The Convergence of Newton’s Method . . . . . . . . . . . . . . . . . . 229' G) Z/ g) c4 o5 M9 l
5.4 Reflection and Refraction of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234& e! K2 h6 g$ l& z
5.5 Mathematics and Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
! h4 ?5 q: h5 t5 B  z/ }7 u6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2454 j0 z/ q0 I0 x8 a  L* D5 J0 G
6.1 Examples of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245. [8 ^8 G; ~9 e8 b
6.1a DeterminingMileage from a Speedometer . . . . . . . . . . . . . . . 245$ o# K" T5 _& ~% {+ H) H
6.1b Mass of a Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
( L  Q+ K- ]( t6.1c Area Below a Positive Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 249
2 M0 _6 q7 Q) P% w% H& z7 ?$ m0 E6.1d Negative Functions and Net Amount . . . . . . . . . . . . . . . . . . . . 252
/ ~2 x9 ^" r5 |0 z! b* N  G6.2 The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
, Q5 Y9 F/ Z$ ]3 `& b1 F) Z2 T6.2a The Approximation of Integrals . . . . . . . . . . . . . . . . . . . . . . . . 257- K' `/ F" m' U* r+ S/ g$ _
6.2b Existence of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2 f2 N) V5 R+ p  t) v. W5 j! n' F6.2c Further Properties of the Integral . . . . . . . . . . . . . . . . . . . . . . . 2658 I* w/ c( f/ I
6.3 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . 271
% K: m' z$ J0 ]: q6 T3 D6.4 Applications of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281) A- h4 |; P+ v; c9 [: }6 [7 [
6.4a Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
( V- S- c: U1 x" q5 \, u1 k6.4b Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
. v7 y' i" b& ]# k6.4c Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9 Q, f# C. O) Z5 u& B" ?. \6.4d Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
3 B: _; A  j7 P1 L1 n1 ^4 O- f7 Methods for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
( s: Q% m2 X. e! E+ @( m& c# l7.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291/ F; w* p% w  [1 z. `; ]/ [
7.1a Taylor’s Formula, Integral Form of Remainder . . . . . . . . . . . . 295
0 Y% L  k4 a7 |7.1b Improving Numerical Approximations . . . . . . . . . . . . . . . . . . 297' _  Q/ ]/ g2 d7 M" p: s7 [' Z
7.1c Application to a Differential Equation . . . . . . . . . . . . . . . . . . . 2996 [, J' g5 ?4 e# f
7.1d Wallis Product Formula for π . . . . . . . . . . . . . . . . . . . . . . . . . . 299
, E" f  n( I0 P6 G7.2 Change of Variables in an Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302, J  @" T6 ^# q4 Z' D% w
7.3 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310# |  t" J4 f/ j1 @& @
7.4 Further Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
* M$ A& B2 Q- ^, U7.4a Integrating a Sequence of Functions . . . . . . . . . . . . . . . . . . . . 326
5 i8 |  B  M! p; h! v7.4b Integrals Depending on a Parameter . . . . . . . . . . . . . . . . . . . . . 329
) M# C, V8 @$ f% A% i- S8 Approximation of Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333, p3 e5 [2 e- A7 B
8.1 Approximating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7 [' O" N' x1 v2 l8 K" J8.1a The Midpoint Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335% K+ f: t; m; v& ]9 Q. c
8.1b The Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
- L2 ?" y, X# }( o8.2 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
0 [. y) t3 V2 p! {' o4 h7 V8.2a An Alternative to Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . 343
- K4 G0 x) f% _# D9 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3472 Y8 O: `6 x$ s7 `9 [
9.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
# n7 a( N! w) e% U9 f9.1a Arithmetic of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . 348: l1 ]& g7 d% H. h0 d. w
9.1b Geometry of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 352- T; z: \4 ]' z! q* n
9.2 Complex-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
5 o# d& t3 C% F9.2a Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
7 C3 t) {8 s5 @' X% N9.2b Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
7 M( F5 A1 P/ `/ U3 p5 A$ P! O9.2c Integral of Complex-Valued Functions . . . . . . . . . . . . . . . . . . 364
4 K* l. q  V6 q) l: A- c& I9.2d Functions of a Complex Variable . . . . . . . . . . . . . . . . . . . . . . . 365
2 c$ N: ^. ~- r* g4 g3 K9.2e The Exponential Function of a Complex Variable . . . . . . . . . 368
! a5 W  j, D% W2 E/ @1 L$ u9 X10 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375) t# Y$ e3 T5 G+ E0 k
10.1 Using Calculus to Model Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
: O( d9 o# T- I2 T8 I: U10.1a Vibrations of a Mechanical System . . . . . . . . . . . . . . . . . . . . . 375) z4 R2 A7 w" G1 k" ~
10.1b Dissipation and Conservation of Energy . . . . . . . . . . . . . . . . . 3793 @% R# k$ A; h: I; j
10.1c VibrationWithout Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
, |; M. p0 N  N4 L10.1d Linear Vibrations Without Friction . . . . . . . . . . . . . . . . . . . . . . 385
6 ~; m& A( {& x7 o( ~10.1e Linear Vibrations with Friction . . . . . . . . . . . . . . . . . . . . . . . . . 387
+ H$ R, g: A" p% K" W1 W- ?10.1f Linear Systems Driven by an External Force . . . . . . . . . . . . . 391" [$ ^5 Y% @; L  l) H7 b' L
10.2 Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
) K1 T% v6 \5 q10.2a The Differential Equation
' |' u7 C' G5 H8 f4 Y1 EdN: Y+ n, _# t4 l+ ?3 T' C5 T, }0 I
dt- q8 |3 K* d6 n8 ^
= R(N) . . . . . . . . . . . . . . . . . . . 399
% d4 f" a7 D% H  B1 X  g3 b10.2b Growth and Fluctuation of Population . . . . . . . . . . . . . . . . . . . 405
. w) ~! L. x  h9 U0 J. T7 b10.2c Two Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
2 C* G( [* w+ G3 @/ D+ a10.3 Chemical Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
! Q8 a4 G% J7 V. t: i10.4 Numerical Solution of Differential Equations . . . . . . . . . . . . . . . . . . . 428% ]  M+ C0 a' V/ M; `+ x: ?/ [
11 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4353 w5 y( K7 ?, W) n2 G0 v, Y  p
11.1 Discrete Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
! g4 x+ `5 u. l' t11.2 Information Theory: How Interesting Is Interesting? . . . . . . . . . . . . . 446
8 o# M  |8 v2 R- V1 z* M( J11.3 Continuous Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4527 M7 ^" h- B) G3 M9 N( g9 d4 v
11.4 The Law of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
; q& b! O, }. z) S; [: m4 l: c, i7 eAnswers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475- X0 C, t, d) R5 a6 @
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
4 E6 z$ t) I' J+ M( s! d9 J1 D7 M" t
& O. B0 g" d( Y0 l. p$ P1 \: x9 K3 ^/ ^* l. g/ t# O, f; c
! a' d" h5 J9 N  V
- @, C8 v$ Q2 B; K

作者: 风中的漂流瓶    时间: 2015-4-11 14:37
Calculus With Applications(2nd_ed)-_Lax,_Terrell" K& y2 Z1 F6 Y: @+ A* ]+ o8 S

Calculus With Applications(2nd_ed)-_Lax,_Terrell.pdf

6.87 MB, 下载次数: 10, 下载积分: 体力 -2 点

售价: 10 点体力  [记录]






欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5