数学建模社区-数学中国

标题: 威斯康星大学 邵军 数理统计(第2版)+习题解答+邵军教学视频38集迅雷链接 [打印本页]

作者: 风中的漂流瓶    时间: 2015-4-14 17:54
标题: 威斯康星大学 邵军 数理统计(第2版)+习题解答+邵军教学视频38集迅雷链接
数理统计教学视频38集4 w6 E- K" n4 I8 S% m$ D3 w0 V
主讲人:邵军 % U- D9 _6 |* X  |
美国威斯康星大学麦迪逊分校,统计学教授。 3 D8 T. Y' [3 _4 j% A& i0 N
( R: T, `! @/ t3 [1 l; a
0 |" m1 c2 X  N. P# s* _
" |8 m+ H- |/ w

& f' C% M  b7 t; k4 n' U邵军,男,1957年出生,1982年毕业于华东师范大学数学系后留校任教.1983年进入University of Wisconsin-Madison攻读博士学位。1987年,邵军教授从WU-Madison毕业,先后执教于Purdue University 以及 University of Ottawa。并于1994年,回到UW-Madison,现为UW-Madison统计系教授,兼系主任。除此以外,邵军教授还曾是美国国家统计局以及著名生物制药咨询公司Covance的Seniro Research Fellow (1996-1997, 1998)。
7 K! a4 N, T. P3 Y1 p5 H
在学术界,邵军教授曾是JASA的Associate Editor(1993-1996,1999-2005),是J. of Multivariate Analysis的Co-editor(2002-2005)。现在,邵军教授还是Statistica Sinica 的Assocaite Editor 以及Sankhya的Co-editor。除此以外,邵军教授还曾是- `7 R7 g, s( A" I. s
国际泛华统计学会(International Chinese Statistical Association)的President-elect以及Board of Directors。自1996年来已培养了多名统计学博士生。
1 q0 u8 y# M3 K( n" ?
在匿名评审的英文学术刊物上,邵军教授有着逾百篇的论文发表,并著有多部学术专著。具体地说,邵军教授的3 y! t8 |. F! p7 y4 [7 I
主要研究兴趣如下:" [7 ]8 D% Z0 U" S7 c; i% @6 ?
(1) The jackknife, bootstrap and other resampling methods
; O1 }# X5 f& H  i/ l(2) Asymptotic theory in linear and nonlinear models9 }& {' t" G5 S( x! `" |
(3) Model selection0 N% X4 ?2 \: D0 n- z& `3 E# W6 P
(4) Sample surveys (variance estimation, imputation for nonrespondents)
9 G; @* P: b" ?1 x5 Q6 P& R(5) Longitudinal data analysis with missing data/covariates) ^# w  X: S( m
(6) Medical statistics (bioequivalence, shelf-life estimation, clinical trials)
" T4 ]9 r7 I3 R. x, t: }

8 {9 f* h1 [/ R7 iMathematical Statistics 2nd ed - J. Shao (Springer Texts in Statistics, 2003) .pdf
7 w7 Q% Q% q9 r0 F% F( ?. f* D+ Y. Y1 W" }/ @& I0 ~- O
目录Preface to the First Edition! _  @' Y3 a0 c+ X
Preface to the Second Edition! E( F) P: k4 w* m6 T! G$ ~* h
Chapter 1.Probability Theory8 x# `* J* O4 z1 d
1.1 Probability Spaces and Random Elements
: a$ Y( C& P: H5 ]3 L1.1.1σ-fields and measures
! q" z9 C* D. H' A0 c1.1.2 Measurable functions and distributions4 S) ^- O; ~; _; ~; y2 L% u" f, W( [
1.2 Integration and Differentiation
. N/ n6 [# y* F" i2 @2 G1.2.1 Integration
- K9 B9 o" W4 N' L. _/ w7 {1.2.2 Radon.Nikodym derivative- B" f3 G) r6 X( k" @+ S
1.3 Distributions and Their Characteristics
4 U) `4 T0 |+ D6 J5 B1 m7 H1.3.1 Distributions and probability densities
2 u/ X$ r% {- D* o) R9 a$ r1.3.2 Moments and moment inequalities
' [' D8 P! a. N+ c: b0 \1.3.3 Moment generating and characteristic functions
: ?# r" \* C) i4 l9 U1.4 Conditional Expectations! z+ b% C9 |" W/ [5 \4 u# ~
1.4.1 Conditional expectations5 L& w1 P# s! U6 v, t; c& B* I3 n
1.4.2 Independence
+ f: ]+ u, h5 Y1.4.3 Conditional distributions
; e- j$ b* T. r1.4.4 Markov chains and martingales' x* A2 D  I; z
1.5 Asymptotic Theory
, ~9 o' F- h" a4 w4 F2 s, V1.5.1 Convergence modes and stochastic orders
1 _7 Z8 V4 O9 [% V/ ^" @+ A1.5.2 Weak convergence
1 {3 A: Z. |& K& Q1.5.3 Convergence of transformations
, E1 t' m7 o: |" [1.5.4 The law of large numbers4 n$ c! {6 J( a
1.5.5 The central limit theorem
& ^! _7 `! b+ U4 ]5 a1.5.6 Edgeworth and Cornish-Fisher expansions1 P* S) u: P' v; p
1.6 Exercises+ g. k  H+ z/ t. T$ b2 D( Z0 P0 V
. a* u& @9 k# |% t
Chapter 2. Fundamentals of Statistics
% E# t. s9 |5 b) J2.1 Populations,Samples,and Models0 J$ Q# e8 P% _, t  K0 m
2.1.1 Populations and samples" ]* V2 x. F# Y* @
2.1.2 Parametric and nonparametric models
4 z( j2 Q% |$ G+ s9 [7 [3 R1 O2.1.3 Exponential and location.scale families  D3 Q9 y1 u' O5 d" N6 P- ^
2.2 Statistics.Sufficiency,and Completeness
6 H" ]/ u% }3 E2 i/ T! I7 T7 Q2.2.1 Statistics and their distributions) Z3 m0 t; M; J4 |
2.2.2 Sufficiency and minimal sufficiency/ p  |2 F- y6 M* X( A& c- _
2.2.3 Complete statistics
- m- k$ N) z; j5 T2.3 Statistical Decision Theory
* r" S1 [* @6 f% a2 F3 Q2.3.1 Decision rules,lOSS functions,and risks% ?2 _& O2 S' v9 b
2.3.2 Admissibility and optimality6 N" f4 S' p) X. ]9 W
2.4 Statistical Inference8 }5 ?7 T. K9 ?  t  {. q% O* F& S5 B
2.4.1 P0il)t estimators) U' D' x) w( A3 F" q9 w( X
2.4.2 Hypothesis tests
* y. l, y$ v8 b5 @2.4.3 Confidence sets
( ?" P$ F" D, K  h5 @! ~2.5 Asymptotic Criteria and Inference
! [( Y% c4 D$ U  f2 @4 {2.5.1 Consistency- i1 v6 q  ]' A. x  U+ S
2.5.2 Asymptotic bias,variance,and mse
+ {7 m; ~' W$ R. v2.5.3 Asymptotic inference0 Y4 ^2 B0 U% z
2.6 Exercises9 }8 h& C" p3 Z4 X9 _$ `$ ]1 k
- ?- `6 Z5 x4 @! E( e
Chapter 3.Unbiased Estimation2 S1 K% t& i0 \) U) M& `2 a# v
3.1 The UMVUE
0 f/ `  P" [. M2 J5 Z9 H' U3.1.1 Sufficient and complete statistics
/ }$ _8 R2 k9 \6 q3.1.2 A necessary and.sufficient condition5 _# Y0 v7 w! @! f5 @
3.1.3 Information inequality
0 N$ u2 N5 }+ k# d* w3.1.4 Asymptotic properties of UMVUE's
$ s9 M+ H3 f. b" U* T9 [# ]: a0 L. y3.2 U-Statistics
3 D1 ]( O/ ?4 t7 @5 B3.2.1 Some examples
" ]* N, H7 ]' V" G& ?3.2.2 Variances of U-statistics
& d  k; \% u) v7 ^! [7 B3.2.3 The projection method" p9 f/ B: Q% F3 y2 |- d1 d3 [$ w/ j
3.3 The LSE in Linear Models
* n9 d+ L4 P0 }# k% E  o, z3.3.1 The LSE and estimability
+ ^$ i, X: x6 \: o  C3.3.2 The UMVUE and BLUE: N; O$ b1 E; h  u' S4 [7 Q
3.3.3 R0bustness of LSE's
8 ~2 R& X3 c. F9 K/ H2 J6 @3.3.4 Asymptotic properties of LSE's& L" n- y+ S& V  I/ O6 J
3.4 Unbiased Estimators in Survey Problems& u; `5 P1 l9 ]7 U1 f# j/ c( W
3.4.1 UMVUE's of population totals% Q/ y& p+ h- _# a
3.4.2 Horvitz-Thompson estimators
' S: R0 M$ ~$ y3.5 Asymptotically Unbiased Estimators0 @* [7 s% [4 T! }9 |9 W
3.5.1 Functions of unbiased estimators/ g6 h, c8 a; n$ z
3.5.2 The method ofmoments
  D1 T0 X9 ]+ e, Z, s$ D3.5.3 V-statistics: f+ ~; e+ r$ C3 m7 t5 p2 |, v9 o
3.5.4 The weighted LSE$ _7 Y2 x; ]+ q5 u$ R. q
3.6 Exercises
3 a6 L3 f1 g8 M. B- A* c
  S4 ^3 m8 Y; E8 a: j; z! M9 iChapter 4.Estimation in Parametric Models
/ `' I# O& b# g1 }) W3 G% ~4.1 Bayes Decisions and Estimators) E$ L) K. |7 N$ P9 L9 [+ c! Y
4.1.1 Bayes actions# B1 f2 r$ |2 @& r# c
4.1.2 Empirical and hierarchical Bayes methods# o- J7 |4 d0 Y; ~& Q- L$ `& R4 g
4.1.3 Bayes rules and estimators
2 j) ^, R7 i  p' p. E. J4.1.4 Markov chain Mollte Carlo& h8 i! l& n2 C: ]  {% j9 R
4.2 Invariance......
' J7 X" i" B# k  x1 Q7 j- J4.2.1 One-parameter location families
5 e6 P; |3 i8 t% P4.2.2 One-parameter seale families
; O5 T- \0 s/ h1 z; b, C4 L  {4.2.3 General location-scale families
! a* w$ e7 e' |7 }2 J! ^4.3 Minimaxity and Admissibility6 k9 s  D) y9 z- M4 b
4.3.1 Estimators with constant risks
4 A' ~; X7 }1 Q% i2 r4.3.2 Results in one-parameter exponential families
. C; ~" J" U! l8 f3 L4.3.3 Simultaneous estimation and shrinkage estimators
7 Z# Q" v# i) r4.4 The Method of Maximum Likelihood0 H2 i2 N8 C- G3 Y' `
4.4.1 The likelihood function and MLE's
+ {' i$ q2 r% W5 Y$ Q4.4.2 MLE's in generalized linear models
# y+ G0 [9 `5 B! e4.4.3 Quasi-likelihoods and conditional likelihoods
1 t9 Q7 k; S  L5 {- X- k4.5 Asymptotically Efficient Estimation
5 Q. U* K: s- L; x" S* @' X! y4.5.1 Asymptotic optimality
- ^# W- S- i: f) L( ?( \, m  k4.5.2 Asymptotic efficiency of MLE's and RLE's0 D* h9 V1 _! {8 M( _# ]. j. f) {6 V
4.5.3 Other asymptotically efficient estimators
' `8 f  y/ S, l4 G3 \: B4.6 Exercises
# K7 x# a" U5 \# \5 c7 ^
( z& X' A& O9 M/ b/ b) V3 X$ jChapter 5.Estimation in Nonparametric Models
8 L3 H: Y+ H. q, Y, @5.1 Distribution Estimators+ K+ X; E0 ~: S# {& Q8 R1 ?
5.1.1 Empirical C.d.f.'s in i.i.d.cases2 P8 M4 D8 `7 `9 ^3 _7 L" X
5.1.2 Empirical likelihoods( Q, c) }0 U6 z. }3 g
5.1.3 Density estimation
2 C2 U  ?; F0 R' Z5.1.4 Semi-parametric methods
0 M7 ]# J! [. T& B8 w5.2 Statistical Functionals
0 d: }5 H. v7 V5.2.1 Differentiability and asymptotic normality
) ]! }( a; C0 m. p, r5.2.2 L-.M-.and R-estimators and rank statistics
  @* z2 [. i) E3 c- C) a8 o% H5.3 Linear Functions of Order Statistics
- F4 ^# l. f( s" l4 P7 P9 _( `5.3.1 Sample quantiles
( S: |/ r; Z5 P5.3.2 R0bustness and efficiency
; h. l( Q  K3 M5.3.3 L-estimators in linear models
0 Y& K- R& Z9 ]1 C) ]! [3 s2 X5.4 Generalized Estimating Equations
: t+ O0 v0 j6 A$ U/ A5.4.1 The GEE method and its relationship with others1 O7 ^- j/ B- ?$ D2 B0 [
5.4.2 Consistency of GEE estimators3 A* P$ p5 l8 M; m! d( F! N
5.4.3 Asymptotic normality of GEE estimators
. b5 J  ^9 G: [5.5 Variance Estimation# R1 _! ^! ], s( P
5.5.1 The substitution.method1 s) ~/ P+ {3 N+ v# u) x
5.5.2 The jackknife4 |9 U3 r7 g7 T' d. J
5.5.3 The bootstrap; y% s' K! H, o+ S
5.6 Exercises
  e1 Q0 u. X2 }0 Y& M" p0 `- d5 l- S, [
Chapter 6.Hypothesis Tests
( Q( l* r0 N( a" F* u# h6.1 UMP Tests
: w2 R7 k+ k0 f8 J" v" v* b* q6.1.1 The Neyman-Pearson lemma4 |6 N: w7 q$ v# m4 S: M
6.1.2 Monotone likelihood ratio8 G( W9 j) j* E* r) ~, c' J
6.1.3 UMP tests for two-sided hypotheses
2 u  l/ J6 n9 n! |8 W# p6.2 UMP Unbiased Tests- i! i2 ]4 V4 \9 y
6.2.1 Unbiasedness,similarity,and Neyman structure1 Y" s+ J1 S- C3 Q. [$ Q  W3 I
6.2.2 UMPU tests in exponential families4 r) v; s/ G4 A
6.2.3 UMPU tests in normal families
0 j; J2 h/ ~1 B3 k( L* v& N+ b……
8 m$ O0 S6 |: {- s! Z* gChapter 7 Confidence Sets* P+ E3 Q% H6 v0 W# b4 M
References4 k! ^4 P- |) d; i1 P. C' Z
List of Notation: S+ K9 k+ H$ P
List of Abbreviations1 ~( S1 p" R4 \  w: f7 `( n6 |
Index of Definitions,Main Results,and Examples# k# F: i: p' z( I! j, j5 E, D
Author Index
+ l5 p3 e- Y& Q: F' n" {Subject Index
. l7 h$ P( J, v1 {4 i; A# B1 d4 _4 s5 Z7 e6 B' ^, m
Mathematical Statistics -- Exercises and Solutions (Shao Jun).pdf
7 z% g' ^$ _$ t; Q6 C《数理统计:问题与解答》内容简介:this book consists of solutions to 400 exercises, over 95% of which arein my book Mathematical Statistics. Many of them are standard exercisesthat also appear in other textbooks listed in the references. It is onlya partial solution manual to Mathematical Statistics (which contains over900 exercises). However, the types of exercise in Mathematical Statistics notselected in the current book are (1) exercises that are routine (each exerciseselected in this book has a certain degree of difficulty), (2) exercises similarto one or several exercises selected in the current book, and (3) exercises foradvanced materials that are often not included in a mathematical statisticscourse for first-year Ph.D. students in statistics (e.g., Edgeworth expan-sions and second-order accuracy of confidence sets, empirical likelihoods,statistical functionals, generalized linear models, nonparametric tests, andtheory for the bootstrap and jackknife, etc.). On the other hand, this isa stand-alone book, since exercises and solutions are comprehensibleindependently of their source for likely readers. To help readers notusing this book together with Mathematical Statistics, lists of notation,terminology, and some probability distributions are given in the front ofthe book.
& \* m, [( a* M, Y4 g; SPreface% H. N  z0 S  \2 w$ k$ C( h/ g8 k
Notation
3 R( E" w  [2 B) U5 L& X8 w4 `% RTerminology
1 k! M8 w" S/ rSome Distributions0 s( }% l% Y# m" a' Q# l) [
Chapter 1. Probability Theory. u7 Q& S% L8 A" T, w6 v2 X
Chapter 2. Fundamentals of Statistics! F, A! b  [8 }/ o3 U! ^
Chapter 3. Unbiased Estimation3 ]& Y/ h  m: t7 x& ^, {
Chapter 4. Estimation in Parametric Models
" a$ R2 U/ b5 R1 KChapter 5. Estimation in Nonparametric Models3 U3 T7 L( S$ M! w1 `+ e! n5 a
Chapter 6. Hypothesis Tests
. ^; N/ V6 o9 L) V3 R- XChapter 7. Confidence Sets
4 l" R- [7 S/ v3 m( DReferences
6 P  r* O4 T8 m3 o7 IIndex

# A1 F6 A! s1 m& ]) n2 F! o* S( L5 }2 M' M: v7 G, `
; \0 ]5 O. d8 K! b8 x& o9 B6 e
" B+ S) V& N4 i; K8 c0 U% E

8 P6 J! B. o! C2 v( E: |* P5 z1 L5 h: u  i4 M

Mathematical statistics. Exercises and solutions.pdf

1.82 MB, 下载次数: 36, 下载积分: 体力 -2 点

售价: 5 点体力  [记录]

Mathematical Statistics ( Springer Texts in Statistics Series).pdf

4.72 MB, 下载次数: 22, 下载积分: 体力 -2 点

售价: 5 点体力  [记录]

美国威斯康星大学 数理统计-邵军 38讲.rar

881 Bytes, 下载次数: 28, 下载积分: 体力 -2 点

售价: 20 点体力  [记录]

视频下载迅雷链接


作者: chenlian1996070    时间: 2015-8-17 13:59
哎哟,不错!~~~
0 a/ K/ @3 V9 \
作者: chenlian1996070    时间: 2015-8-17 13:59
哎哟,不错!~~~4 G8 b" k/ P% M% k

作者: LYJA    时间: 2015-10-10 21:56
very good,thank you very much!
8 V; @+ j* c2 M& r* x/ t
作者: 275943151    时间: 2018-5-23 09:43
好东西,到处找不到资源,谢谢楼主
* ]6 s1 L, [5 V  x$ h# G' }' l6 Y
作者: tongjidjz    时间: 2019-5-29 22:34
不错 很好的资源
, F1 L* S. D4 `2 ~
作者: tongjidjz    时间: 2019-5-29 22:44

0 c5 {/ ~; q# x感谢 很好的资源
# ?' h  K( t0 \9 k
作者: lbh    时间: 2022-2-20 10:27
谢谢!!!!!
/ E" f$ L6 C8 [7 l
作者: 1198443188    时间: 2022-3-31 04:04
66666666666666666666666666& H* g# e6 |4 \5 h  W2 A4 W: N

作者: 1198443188    时间: 2022-3-31 04:04
666666666666
, f* _- D, U& m/ E- C4 q7 H" L
作者: asdfg147258    时间: 2022-11-7 10:04
哈哈哈哈哈哈,不错哦  f( |# v% P9 j" w

作者: asdfg147258    时间: 2022-11-7 10:07
哈哈哈哈哈哈哈哈哈哈哈) @3 d* g( p$ \+ {

作者: 532855186    时间: 2023-1-17 09:31
标题: @pump_upp - best crypto pumps on telegram !
chenlian1996070 ᱒ 2015-8-17 13:59
$ b0 @( t9 _  N9 F5 H, ~2 l1 ]2 l°í~~~

0 d7 o  t; l/ G! u" chttps://t.me/pump_upp - best crypto pumps on telegram
) x& ~+ G& O$ d7 S7 iMake 1000% and more within 1 day, join channel @pump_upp !
- e' l. [+ y: W- i& F) x
作者: 1290390676    时间: 2023-8-19 15:50
您好,请问视频如何打开呢
/ ]% Q8 f# |. D
作者: 1290390676    时间: 2023-8-19 15:51
您好,请问视频压缩包如何打开观看呢
7 a: g9 d* c0 O9 T% Y
作者: 471769615    时间: 2023-10-15 04:37
Mathematical Statistics) E9 l0 c& u! a, N  h& v9 f1 o

作者: 471769615    时间: 2023-10-15 04:37
Mathematical Statistics
5 ]$ A5 v7 u: z  V( b; u6 d
作者: 471769615    时间: 2023-10-15 04:38
Mathematical Statistics
5 o6 t. t1 z; l' u$ r




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5