数学建模社区-数学中国
标题: 威斯康星大学 邵军 数理统计(第2版)+习题解答+邵军教学视频38集迅雷链接 [打印本页]
作者: 风中的漂流瓶 时间: 2015-4-14 17:54
标题: 威斯康星大学 邵军 数理统计(第2版)+习题解答+邵军教学视频38集迅雷链接
数理统计教学视频38集
B1 S7 J3 X3 o! f. \2 f主讲人:邵军
7 `9 s+ I( Z8 |7 A) d美国威斯康星大学麦迪逊分校,统计学教授。 ; u" P& z+ z* t+ N( z6 s" ]
0 L' _( }. V5 G
! Y: Z* f# R& e9 r/ M4 V
, c- x2 c7 T* X, E0 R9 n) g
& u% Y7 |" t; D; V" r
邵军,男,1957年出生,1982年毕业于华东师范大学数学系后留校任教.1983年进入University of Wisconsin-Madison攻读博士学位。1987年,邵军教授从WU-Madison毕业,先后执教于Purdue University 以及 University of Ottawa。并于1994年,回到UW-Madison,现为UW-Madison统计系教授,兼系主任。除此以外,邵军教授还曾是美国国家统计局以及著名生物制药咨询公司Covance的Seniro Research Fellow (1996-1997, 1998)。
2 [1 i$ j) \% Z8 M. x; h/ u在学术界,邵军教授曾是JASA的Associate Editor(1993-1996,1999-2005),是J. of Multivariate Analysis的Co-editor(2002-2005)。现在,邵军教授还是Statistica Sinica 的Assocaite Editor 以及Sankhya的Co-editor。除此以外,邵军教授还曾是" B8 p- R; e* W( \# e/ G$ @
国际泛华统计学会(International Chinese Statistical Association)的President-elect以及Board of Directors。自1996年来已培养了多名统计学博士生。# }5 G7 Y! {, d' ]
在匿名评审的英文学术刊物上,邵军教授有着逾百篇的论文发表,并著有多部学术专著。具体地说,邵军教授的
6 t7 A' G: e% p h1 _4 ?主要研究兴趣如下:
4 H$ D. V* A+ Y% z(1) The jackknife, bootstrap and other resampling methods% I: S5 D6 P% T$ v) K+ N
(2) Asymptotic theory in linear and nonlinear models' K( y2 L6 K" g
(3) Model selection
5 z/ L8 d& h c4 s" v. O0 J(4) Sample surveys (variance estimation, imputation for nonrespondents)
) r e" ]0 F0 O(5) Longitudinal data analysis with missing data/covariates. [1 o2 U6 v: ?: I
(6) Medical statistics (bioequivalence, shelf-life estimation, clinical trials)2 n; r& J' M/ \. ~, j4 Q
& J f: L7 {* `1 }, K' l7 G
Mathematical Statistics 2nd ed - J. Shao (Springer Texts in Statistics, 2003) .pdf
) {) r: `* i6 c" R. n$ [% z& D, R% W9 L% o0 l) l5 }: y# f# V; t4 q
目录Preface to the First Edition
: P5 ?* W6 f* H* L: D8 sPreface to the Second Edition
% Y( l8 [% }0 }/ P; n I! lChapter 1.Probability Theory* _* _- E& E( ~8 P
1.1 Probability Spaces and Random Elements
# D" A: y) t: K1.1.1σ-fields and measures
( X- H$ C+ Z X' H/ v4 T0 ~! l1.1.2 Measurable functions and distributions
1 Y, L8 Q& p" V# l6 Q& P9 E5 A1.2 Integration and Differentiation9 Q( J# S- {- q5 q6 Q
1.2.1 Integration8 ~/ h8 j6 R9 A$ U; l6 U
1.2.2 Radon.Nikodym derivative
; r7 \! O1 ~* r- b [1.3 Distributions and Their Characteristics
- N- q( W7 I6 i" t9 [6 O. R1.3.1 Distributions and probability densities
# y4 v0 W' j5 L0 Z3 N1.3.2 Moments and moment inequalities
6 K9 z/ Q; {6 m5 \1.3.3 Moment generating and characteristic functions
( n) I) k% \6 {' z2 ~1.4 Conditional Expectations
: B+ M( x) {! m- {% c1.4.1 Conditional expectations
4 q* A. Q5 ]: u2 j9 M1.4.2 Independence8 A/ t2 Z. |& ^
1.4.3 Conditional distributions1 w0 P: `% k8 `
1.4.4 Markov chains and martingales: a8 S9 [/ G) e$ S, p3 P3 m6 L1 S1 W: u
1.5 Asymptotic Theory
5 _* O3 Y- ~2 L0 h4 O1.5.1 Convergence modes and stochastic orders
* u. t5 V+ K/ v" R' A; C% y) ^1 l9 v1.5.2 Weak convergence0 B4 G# m6 R$ n! Z" P0 ~
1.5.3 Convergence of transformations
' q, ]2 g' K5 N- c1.5.4 The law of large numbers; h* Z" P) ]; j7 X; J- ~
1.5.5 The central limit theorem! E- n" S7 Z* A$ Q D& z5 Q
1.5.6 Edgeworth and Cornish-Fisher expansions; M2 e+ m9 s# {. c# }$ |2 Y! e
1.6 Exercises$ `) }+ b, D+ M+ C
5 i7 x5 `8 C- A+ J
Chapter 2. Fundamentals of Statistics
8 i' m2 h ~9 z2.1 Populations,Samples,and Models
- n6 {- B9 c! E/ t) ~/ j2.1.1 Populations and samples6 p* p, m( d% }" ], ?! {
2.1.2 Parametric and nonparametric models
4 O8 k) t/ U& Z2.1.3 Exponential and location.scale families2 l$ `" c- ^* T
2.2 Statistics.Sufficiency,and Completeness
- g- \# O0 H2 @1 l- G, p2.2.1 Statistics and their distributions
9 N* o# r" |7 }) p3 j* o2 Q2.2.2 Sufficiency and minimal sufficiency1 S! |; m" u( |; J- s) ~2 B
2.2.3 Complete statistics
6 v- y! f( `! W5 A* ]9 i2.3 Statistical Decision Theory
1 ^0 l: x! X, u, h5 y2.3.1 Decision rules,lOSS functions,and risks
) R' i. s" m0 b) x. F8 R$ |2.3.2 Admissibility and optimality
9 p! ?4 X1 _! c W: w; _2.4 Statistical Inference8 n& {, F# ]& k/ E
2.4.1 P0il)t estimators6 H, m% h j8 X+ b) ~0 S
2.4.2 Hypothesis tests
7 [7 y- m+ ]2 Q2.4.3 Confidence sets- f- |% I( X5 W' R; r
2.5 Asymptotic Criteria and Inference
* U$ M; F. F; E5 _- b2.5.1 Consistency
2 K* }7 b% q1 D2 N( `1 U s; c9 N2.5.2 Asymptotic bias,variance,and mse
8 }4 a5 e$ a a: j2 R' H1 w0 h2.5.3 Asymptotic inference
# }8 |8 {0 r* }# p+ @2.6 Exercises
7 q+ W/ |% r& Q& U' O+ M' n9 j. t
0 p6 {4 Q$ ^$ ]" H% L6 Q$ hChapter 3.Unbiased Estimation
1 j+ Y) D% M) K: q o% \3.1 The UMVUE& G+ |" g5 H2 x h r8 X# F* F
3.1.1 Sufficient and complete statistics) W4 Z& B: Y' f% p4 [/ B
3.1.2 A necessary and.sufficient condition
3 d/ B' _2 A# r% E- o" @. [ N+ W3.1.3 Information inequality+ x1 y! U7 y8 j% H
3.1.4 Asymptotic properties of UMVUE's' \/ Z1 R" S2 Y; d* i$ ?' ^; Q w
3.2 U-Statistics& |3 z$ R# e# f8 V9 o0 D
3.2.1 Some examples
, o4 `7 u* J2 H. e f3.2.2 Variances of U-statistics! P: Y! k# c# V
3.2.3 The projection method
; E2 e- m! b" U3.3 The LSE in Linear Models
, z* @1 @2 j4 L7 Z" `; d5 O3.3.1 The LSE and estimability4 q9 j6 D4 i6 p8 e. F
3.3.2 The UMVUE and BLUE- Q* N @, P0 L& }
3.3.3 R0bustness of LSE's& n/ c# u) Z; D( B Y
3.3.4 Asymptotic properties of LSE's: B; h+ Y7 I' b+ Q# i I, `2 E
3.4 Unbiased Estimators in Survey Problems' B* d* S2 A4 J$ f, \! J ^# {
3.4.1 UMVUE's of population totals7 _% a v( l" ? i2 ~; ?
3.4.2 Horvitz-Thompson estimators: e1 ]8 @' s% r) Z1 W y3 O
3.5 Asymptotically Unbiased Estimators3 Y0 ^) ]# ~ k! y6 u6 r
3.5.1 Functions of unbiased estimators
' H `0 `! n- x8 z1 \: M3.5.2 The method ofmoments* H$ c+ P& Y0 x1 W2 q1 `/ }
3.5.3 V-statistics
' s% a# l; Y3 X3.5.4 The weighted LSE
# X9 R# h9 {# `2 D3.6 Exercises
T' l$ c. i& u: L9 Q, w+ z( v
1 v2 z2 v @1 ^: cChapter 4.Estimation in Parametric Models
, Z' n( M" G. b4.1 Bayes Decisions and Estimators" B, @& ` W' C5 h
4.1.1 Bayes actions
8 Z: f$ g7 [8 N& T, R9 U2 H4.1.2 Empirical and hierarchical Bayes methods1 M3 r; I W" k% u% m
4.1.3 Bayes rules and estimators
- B, y" |* U9 s* ~) j! I4.1.4 Markov chain Mollte Carlo
8 g' u- |1 r/ W: }/ F% [* J/ t4.2 Invariance......
+ s8 s8 N5 ?0 }/ g* g( N4.2.1 One-parameter location families$ R- {" O, Q- ~- f8 M* g9 j5 Z
4.2.2 One-parameter seale families
+ x: `9 E7 m8 {: g2 x9 R4.2.3 General location-scale families& e7 {4 J7 n$ `, |* \" V# m
4.3 Minimaxity and Admissibility0 h% q7 C A; c5 d! y
4.3.1 Estimators with constant risks
5 d$ N' a- L" L8 y, a4.3.2 Results in one-parameter exponential families/ F: N4 |) ` R( m8 l" S/ j
4.3.3 Simultaneous estimation and shrinkage estimators
2 b: B; `& H! S' m& r) n7 z" Q4.4 The Method of Maximum Likelihood+ @1 u1 T* Y4 R& W
4.4.1 The likelihood function and MLE's
* s6 X% `. p: Q: r6 a4.4.2 MLE's in generalized linear models+ H2 H# b' H& F5 l( V7 \" w- f4 w# `
4.4.3 Quasi-likelihoods and conditional likelihoods1 Z3 k* V/ n& O5 N- k7 o3 ?
4.5 Asymptotically Efficient Estimation' R# P5 ^# M* {6 x7 W$ O8 e7 n6 E {) P9 e
4.5.1 Asymptotic optimality# J9 \! ?( F5 [9 ~
4.5.2 Asymptotic efficiency of MLE's and RLE's/ T5 M; p8 R; [9 p+ i
4.5.3 Other asymptotically efficient estimators
5 H# F5 [ r9 c/ S B; |4 I% W4.6 Exercises! t s" p) K1 n& h
5 U( ^& ~- X3 C% u5 U
Chapter 5.Estimation in Nonparametric Models
2 C2 t+ }' t% ?5 O2 h5.1 Distribution Estimators
/ z3 V) b9 f6 q& Q$ D5.1.1 Empirical C.d.f.'s in i.i.d.cases" g) y: K1 O( {/ d: S
5.1.2 Empirical likelihoods- W+ u3 n6 U& i, s$ k0 I
5.1.3 Density estimation
( L$ o2 N; [4 T( m t4 R5.1.4 Semi-parametric methods' c3 X& p! y. v9 |
5.2 Statistical Functionals8 B2 L0 ^$ X2 ~& d
5.2.1 Differentiability and asymptotic normality
7 c+ K& B' I, g3 V& y" ~1 R5.2.2 L-.M-.and R-estimators and rank statistics2 q ]9 V0 g5 y3 R! V9 M
5.3 Linear Functions of Order Statistics! a- @' ^: l9 E6 p
5.3.1 Sample quantiles, B' A& \3 [& @- J
5.3.2 R0bustness and efficiency5 r8 w3 N1 C' }0 L( G' z
5.3.3 L-estimators in linear models9 n( R% D8 `- M2 ~, P. W4 ^8 K
5.4 Generalized Estimating Equations& R5 A" l0 i4 z) V1 r+ b
5.4.1 The GEE method and its relationship with others
2 S! h H( S- ^; M A2 X; N5.4.2 Consistency of GEE estimators
- ]2 f6 a( n! R( u$ d5.4.3 Asymptotic normality of GEE estimators
% k7 ~. l0 m4 u, `5.5 Variance Estimation, N+ J, \* P, M, B+ t& W( {7 ^
5.5.1 The substitution.method
1 C% s, O( `% }* l0 j4 Z# u- v6 b5.5.2 The jackknife
, `5 B0 q+ s% G5.5.3 The bootstrap
3 k; Q0 F1 d( ]1 l5.6 Exercises
) \0 z; K! ^' o3 x* t2 Q8 d% ?% x( j4 E/ s
Chapter 6.Hypothesis Tests H- a/ A6 {0 N
6.1 UMP Tests3 [; G- c A( W& G3 `. V; e# F
6.1.1 The Neyman-Pearson lemma
9 O: W' H; l- ?6 H1 Q# H, S8 f6.1.2 Monotone likelihood ratio7 |% ]6 x+ F) b& B# S$ z* @+ K
6.1.3 UMP tests for two-sided hypotheses
# Q8 f; J; Q: L1 \. s9 F0 l. g! o6.2 UMP Unbiased Tests
1 Y j1 m; I6 ?4 L. X& N6.2.1 Unbiasedness,similarity,and Neyman structure
. P2 c. b% U. f" B% y6.2.2 UMPU tests in exponential families
/ h$ ~2 |" p9 O6.2.3 UMPU tests in normal families/ k' t' ]3 p) j z
……$ n7 r: C6 t; p" ~9 ]/ o3 C E% L8 s% G
Chapter 7 Confidence Sets# ]: q% C- L1 z) C5 ]1 @2 `
References5 _! W* s5 Z' u+ ~ W9 f( d5 G
List of Notation
( n6 ~: m6 \5 F; C6 q- QList of Abbreviations$ k2 N+ s3 l9 W. V* V
Index of Definitions,Main Results,and Examples1 m$ m- b( C& ^
Author Index
/ \* V% n+ @# z F" c: |Subject Index
" k, ]* U9 |6 N4 ~0 }
6 R3 z$ L1 J9 [9 H7 O8 MMathematical Statistics -- Exercises and Solutions (Shao Jun).pdf
# n) ^1 H( X/ F3 @《数理统计:问题与解答》内容简介:this book consists of solutions to 400 exercises, over 95% of which arein my book Mathematical Statistics. Many of them are standard exercisesthat also appear in other textbooks listed in the references. It is onlya partial solution manual to Mathematical Statistics (which contains over900 exercises). However, the types of exercise in Mathematical Statistics notselected in the current book are (1) exercises that are routine (each exerciseselected in this book has a certain degree of difficulty), (2) exercises similarto one or several exercises selected in the current book, and (3) exercises foradvanced materials that are often not included in a mathematical statisticscourse for first-year Ph.D. students in statistics (e.g., Edgeworth expan-sions and second-order accuracy of confidence sets, empirical likelihoods,statistical functionals, generalized linear models, nonparametric tests, andtheory for the bootstrap and jackknife, etc.). On the other hand, this isa stand-alone book, since exercises and solutions are comprehensibleindependently of their source for likely readers. To help readers notusing this book together with Mathematical Statistics, lists of notation,terminology, and some probability distributions are given in the front ofthe book.
4 n* X- h. q: P6 K4 U7 ~- q( ~Preface
; A2 p/ |7 i0 w1 Z/ D) h- l7 O4 FNotation) [! i- F: L( z/ ^* \- ?
Terminology
( K" k$ `; F5 v1 w/ z; ]" ySome Distributions
; I% _. B8 K$ X% E8 TChapter 1. Probability Theory
* s5 K. _9 y4 G9 k# F6 I: FChapter 2. Fundamentals of Statistics
( m3 Z8 H- C2 f0 WChapter 3. Unbiased Estimation
+ p7 ~3 a! Q1 J9 d- XChapter 4. Estimation in Parametric Models
! l: X, |* Y1 ]& PChapter 5. Estimation in Nonparametric Models" Y F! W- L" ^$ _" Z' E1 }2 n
Chapter 6. Hypothesis Tests5 J% v2 P5 x- H/ ]
Chapter 7. Confidence Sets2 X3 q1 R' h9 |9 Q7 I
References
; u9 f# h: K# K# PIndex
) X# E% k$ K. @" g! p: ]
# _ C, F/ ^; V- b' l/ o' }3 k
4 |& [2 S$ V- l1 |( I
" Z; h( s& x2 c. Z" y4 q4 [
" y5 m9 W Q& F/ J/ C/ l/ `0 `8 y6 B8 F
-
-
Mathematical statistics. Exercises and solutions.pdf
1.82 MB, 下载次数: 36, 下载积分: 体力 -2 点
售价: 5 点体力 [记录]
-
-
Mathematical Statistics ( Springer Texts in Statistics Series).pdf
4.72 MB, 下载次数: 22, 下载积分: 体力 -2 点
售价: 5 点体力 [记录]
-
-
美国威斯康星大学 数理统计-邵军 38讲.rar
881 Bytes, 下载次数: 28, 下载积分: 体力 -2 点
售价: 20 点体力 [记录]
视频下载迅雷链接
作者: chenlian1996070 时间: 2015-8-17 13:59
哎哟,不错!~~~
& m% n7 K* ?3 H- C* b; o# [ `
作者: chenlian1996070 时间: 2015-8-17 13:59
哎哟,不错!~~~
; A, X/ C0 p# U# ?* P. `
作者: LYJA 时间: 2015-10-10 21:56
very good,thank you very much!
2 m; Z7 A) ?1 }- j& x" n
作者: 275943151 时间: 2018-5-23 09:43
好东西,到处找不到资源,谢谢楼主& e/ p3 A; C) e' u( y+ n! R* S
作者: tongjidjz 时间: 2019-5-29 22:34
不错 很好的资源
8 C" x: L5 v6 b8 C. {
作者: tongjidjz 时间: 2019-5-29 22:44
& @7 A: _0 U0 O6 Q7 |感谢 很好的资源+ Y# ?; k1 `8 V2 Z6 N$ G4 e
作者: lbh 时间: 2022-2-20 10:27
谢谢!!!!!8 Q; R" U" V: z, H4 o. _9 i9 j6 m" F( L1 G
作者: 1198443188 时间: 2022-3-31 04:04
66666666666666666666666666
; L, o6 N+ _2 H# E* D5 a
作者: 1198443188 时间: 2022-3-31 04:04
666666666666
( X' M. {" s% y& Y. ^; [
作者: asdfg147258 时间: 2022-11-7 10:04
哈哈哈哈哈哈,不错哦2 r3 n" c1 w9 s/ I) ^& ^
作者: asdfg147258 时间: 2022-11-7 10:07
哈哈哈哈哈哈哈哈哈哈哈
, Q* w! A1 G( U0 p' r6 c6 q+ ]
作者: 532855186 时间: 2023-1-17 09:31
标题: @pump_upp - best crypto pumps on telegram !
chenlian1996070 ᱒ 2015-8-17 13:59 
& M. j1 s/ P9 X9 [7 [+ n°í~~~
/ W9 s) d' e0 ~" w' l' ^& w5 p* H! J
https://t.me/pump_upp - best crypto pumps on telegram
d: D# O& M; C. ~* ]Make 1000% and more within 1 day, join channel @pump_upp !
) c+ G9 P1 n2 G: F6 [8 R
作者: 1290390676 时间: 2023-8-19 15:50
您好,请问视频如何打开呢
' k( |+ Z, r) M" D9 F; b( J
作者: 1290390676 时间: 2023-8-19 15:51
您好,请问视频压缩包如何打开观看呢
9 C+ r* A: I |' P+ \
作者: 471769615 时间: 2023-10-15 04:37
Mathematical Statistics
- [. `& Q$ O/ p6 F" p
作者: 471769615 时间: 2023-10-15 04:37
Mathematical Statistics
" @/ @6 K5 e8 S! g2 X' ?1 E
作者: 471769615 时间: 2023-10-15 04:38
Mathematical Statistics
; N5 b) T {3 F! m/ a1 w* n/ `# F/ n
| 欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) |
Powered by Discuz! X2.5 |