数学建模社区-数学中国

标题: Mathematica 能否完全替代Lingo? [打印本页]

作者: 入戏太深丶    时间: 2015-4-15 14:24
标题: Mathematica 能否完全替代Lingo?

要求从1开始,最终回到1,且路径有方向,要求所有路径都经过。   a- L% W$ v4 y: ]
以下是lingo的代码
# V# _- D5 d! R# zsets:& n( @, x: w" y" c3 I% I; C
nodes/A,B,C,D,E,F,G,H,I,J,K,L/;8 G9 {: _6 I  ~* i6 q2 A1 J
arcs(nodes,nodes)/
7 j' S* {; h2 k$ E# FA,B A,E4 n2 j2 f; J6 ]) v3 P
B,C B,E B,F8 c. d: }3 M& ?2 B& n9 y- U3 c
C,B C,D
- f! M! s! S0 d0 N' h! S4 LD,C D,H9 N7 T- B, x- }+ v0 W( H8 Q2 F
E,A E,F) H4 R3 _3 |# Y- u
F,B F,E F,G F,I F,J
# s' e5 V! ~8 b1 oG,C G,F G,H G,K
  f, k/ r$ E. O% f" G% ]H,D H,K H,L
" c& p1 I  A! p1 y; [; |) Q2 D" sI,E I,J7 Z5 h" M0 w. s! |4 k+ A+ M7 h, e
J,F J,G' v$ `/ F( U  d7 _
K,G K,J
# G# E; R9 B2 {% {$ I- ZL,K
3 \3 P1 |* a  N: [3 U/: c, x;( x. Q0 D& |3 s" O% X) B
endsets# o8 _2 _- y, I) A% I8 z/ J
data:, ^* Q" S4 U6 T
c=
) h+ Z2 [+ h( k2 ?* Y150 1651 c) `; n5 z9 @0 K
130 230 160
; H* g- `* E: ?2 x140 100
' ~; \3 z7 N5 Z* Y$ a3 G/ [+ _100 190
- S, b9 g' J7 h& D6 j5 M165 144. c' ]  o+ m, W' c8 [! V8 J
170 144 128 218 1747 k9 |: [& v4 t/ F+ H2 F! s
200 122 109 185! V* a2 @: P' E- X
180 141 190
* k. d+ R3 e+ P: O0 a6 y; ?  }3 Z194 148
% E8 a' V  s& g" J" K174 233% p! L' o+ b$ e" W5 m8 ^
185 135
) d+ m" }$ f7 f: S110;& Z6 I* \) s* f; y4 E
enddata$ \" B! L/ C2 I" T! \# |4 }- V  B
n = @size(nodes);
0 R; ]0 n6 V+ e2 t& P% x4 _- Omin = @sum(arcs: c * x);4 a3 N* T0 b, I  n0 t% m
@for(nodes(i):
4 I& T* k. Y3 Z- v@sum(arcs(i,j):x(i,j))=@sum(arcs(k,i):x(k,i))
' n. ?2 O' [' b0 ~4 V);" }, K$ o. ?; d8 Z8 s
@for(arcs: @bnd(1,x,9)); : |, P" c( s5 o' p9 }' I& _

$ Z+ h: H* R# l) c它只能算出路径的步数和路程,并不能得到线路。希望能用mma解决这个问题。

---------------------------------------------------------------------

自己用mma写的程序对于四点还可以,但是扩展到12点实在繁琐:

& ^- M" Z* K5 c* X; w, `# Y

P11 = {2, 5}; P12 = {150, 165};

P21 = {5, 6}; P22 = {230, 160};

P51 = {1, 6}; P52 = {165, 144};

P61 = {2, 5}; P62 = {170, 144};(*只考虑1、2、5、6四点,P11为第一点“可去往的点”,P12表述对应的路程*)

open[q_] :=

Module[{i = 1, randomD, randomP, D, randomreal, p1, p2, p5, p6, c, u,

Df = 80000, uf, path = {1}, pathf = {1}, pb},(*随机搜索*)

For[r = 0, r < q, r++,

{p1 = {}; p2 = {}; p5 = {}; p6 = {}; u = 0; D = 0; i = 1;

randomP = P11; randomD = P12;

While[

Length[p1] != 2 || Length[p2] != 2 || Length[p5] != 2 ||

Length[p6] != 2 || i != 1,

randomreal = RandomInteger[{1, Length[randomP]}];

c = randomP[[randomreal]]; AppendTo[path, c];(*Print[path];*)

Which[

i == 1 &&

Product[If[p1[] != c, 1, 0], {i, 1, Length[p1]}] ==

1, {AppendTo[p1, c]},

i == 2 &&

Product[If[p2[] != c, 1, 0], {i, 1, Length[p2]}] ==

1, {AppendTo[p2, c]},

i == 5 &&

Product[If[p5[] != c, 1, 0], {i, 1, Length[p5]}] ==

1, {AppendTo[p5, c]},

i == 6 &&

Product[If[p6[] != c, 1, 0], {i, 1, Length[p6]}] ==

1, {AppendTo[p6, c]}];

i = c;

D = D + randomD[[randomreal]];

Which[i == 1, {randomP = P11, randomD = P12},

i == 2, {randomP = P21, randomD = P22},

i == 5, {randomP = P51, randomD = P52},

i == 6, {randomP = P61, randomD = P62}];

u = u + 1; If[u > 11, Break[]];

If[Df > D, {Df = D, uf = u, pathf = path, path = {1}},

path = {1}];

}

];

Print[Df, ",", uf, ",", pathf];


( t5 _; T8 R0 r9 b' l, y

open[1000]

0 P( {( y0 E0 a' v
) t& G/ c* N7 D( U  r8 S  |' G





欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5