数学建模社区-数学中国
标题:
请问FindRoot外面套一个For循环的问题
[打印本页]
作者:
cxy623157929
时间:
2015-6-2 12:57
标题:
请问FindRoot外面套一个For循环的问题
lamda = 1.55 10^-6;
' @. q# c: D' t- m# g
k0 = 2*Pi/lamda;
5 q: p7 w0 z. X# R5 b
n1 = 1.4677;(*纤芯折射率*)
6 h; k% f* J# U8 w
n2 = 1.4628;(*包层折射率*)
0 a3 M: {& E0 |8 o
n3 = 0.469 + 9.32*I;(*银折射率*)
) g4 l+ I. Q7 ~; V8 D- `: I
a1 = 4.1 10^-6;(*纤芯半径*)
* i1 p1 B* d5 W9 h8 j
a2 = 62.5 10^-6;(*包层半径*)
9 m' O. H4 n9 M
d = 40 10^-9;(*金属厚度*)
" \% E" Y: f. b/ k
a3 = a2 + d;
6 L! ^' d6 ^3 N( Y
mu = Pi*4 10^-7;(*真空磁导率*)
t0 m |2 d/ f9 Y/ |+ Y6 V4 i
epsi0 = 8.85 10^-12;(*介电常数*)
: y% x5 A* P6 C" k" j0 N
( N7 o) F9 r: H1 Y, k; W
n4 = 1.330;
& D2 Q$ v P3 R
* u x$ E+ f! ]" F2 f$ L2 ]
neffcl = neffclre + neffclim*I;
! _9 M8 K8 Z& {% S# k; p
, ^, ?/ Y# K; g2 L$ v8 s, S
betacl = k0*neffcl;
. i1 Y- G& h' j, j! m
omega = 2*Pi*299792458/lamda;
/ V1 @% z' n8 Q4 W
0 m) X. y0 t; y: m" \
epsi1 = n1^2*epsi0;
3 i, {% ^0 R! m/ A3 h
epsi2 = n2^2*epsi0;
0 w# y# Z' O* f! A
epsi3 = n3^2*epsi0;
0 |1 u* w1 k( H9 X
epsi4 = n4^2*epsi0;
" B% t" e- m1 H' y, {8 T* ~1 j
) y- \) n# p+ m9 D" V- n' G% |
u1 = k0*Sqrt[neffcl^2 - n1^2];
+ d# x) G6 q' @% I( {# @
u2 = k0*Sqrt[neffcl^2 - n2^2];
; x; }2 N7 E3 Z9 w) W9 c1 \
u3 = k0*Sqrt[neffcl^2 - n3^2];
1 ^/ E4 ?0 d( U5 |. T' B/ H& E
w4 = k0*Sqrt[neffcl^2 - n4^2];
$ h( u9 v$ i7 f3 y8 H# C
' o7 O0 M/ d' B+ Y- P1 W; A
Iua111 = BesselI[1, u1*a1];
. V: ]9 f& ^; @& k% o
Iua121 = BesselI[1, u2*a1];
0 d, d. g; ]. G- c: F
Iua122 = BesselI[1, u2*a2];
' u" b1 J( |& _8 Y5 O; T7 l
Iua132 = BesselI[1, u3*a2];
! V3 j" D/ U1 N4 i0 v
Iua133 = BesselI[1, u3*a3];
/ ]; w8 B2 t- |
IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
. h! N2 A: H4 _8 i4 S& J% f
IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;
% C9 H: x' G5 _0 Q
IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
$ A: H$ W( s, ` G
IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
! y; k/ T. F6 }
IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
+ Z. \3 e) r# D( y2 [7 R. @* \
5 P+ ^* f( O( h2 l1 ]
Kua121 = BesselK [1, u2*a1];
. c" m( E) P1 g' f# h8 h
Kua122 = BesselK [1, u2*a2];
, `/ A3 Z$ I5 e# i' Q* S
Kua132 = BesselK [1, u3*a2];
5 q; g3 z! E# D. j7 y2 t$ N
Kua133 = BesselK [1, u3*a3];
. N& J& |. p# n% A, b, q
Kwa143 = BesselK [1, w4*a3];
+ y! D6 X' |2 g( h3 F6 T. S( I# {
KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;
0 h7 }* |7 z$ p+ M9 r3 z
KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
0 Z [% }2 u& A9 z: }0 B: L
KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;
$ t. p" f: _9 t) h
KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
7 r- @& K9 ]% z2 L+ s
KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
3 q- [0 G# }, ]8 N, p7 U" g4 A
" X6 y$ ]1 a# l. |+ ^
H1 = (betacl*Kwa143*
+ y f% N3 l. E) `
Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
( C& b: w" y# x( W
Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
9 l; O3 q G: G/ ?% |3 X) @
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
4 G/ {5 a# t N
Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
b) g9 q7 y/ B
Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
$ a5 i: x/ N- B
Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
% R$ G8 m* f( p8 U3 ]
Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
% Z6 h- \. [' Q/ i
Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
) h* H5 I' u& O" O
. L) [% b, e; i3 D
H2 = (betacl*Kwa143*
5 {* S# S: h" ^* P0 L% D
Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
& D/ t) V# ^' H# ?
Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
8 L' O1 ]8 R$ P2 l9 A, q
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
) o4 U% B" y; b& h1 y; A$ H
Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
& u* G$ f$ G+ x
Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
# a7 ^$ K: o5 J
Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
* h% T& c3 l. \, ^! n! G7 }
Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
+ C# k+ q2 j+ _7 I3 h# t
Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
" R9 ]" l! D; n" I+ {# v
8 b: O7 I9 e" R( G9 S3 K
H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
# v) v" i& s! _
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
/ O2 ?* y% M% R( l
Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
9 V9 I. y, W5 Y3 c# g; Z; H8 @) c
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
' r; i2 p& I1 T' j x" e! G! I d
Kua122 -
1 t) X5 I$ {+ x i
u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
# v4 ]: N; d: P7 Q' @' L# _/ U
w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
. \" N I4 S; @( _7 V4 J( F
u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
6 x) j* K0 g7 @$ }0 o& _
w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
' D% i, b6 a: j5 d9 h
- R; m3 T$ n& n& G+ Z7 Y# |1 _+ Y
H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
" i7 R, F- w5 `: w$ f; m
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
, { G p( T3 G' k
Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
6 O( h2 C( b$ ?) v
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
. S9 J- M4 W6 R- S9 A8 Y4 K# N
Iua122 -
7 ~. k4 f- r" p( U2 D
u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
- v1 f* I& Y* g; F' \( U4 i4 s9 a: j
w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
* W6 M, k% p5 Y* [4 t; s7 _5 ]
u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
9 ]1 S7 j7 ~* o+ {' S
w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
# D. u; r+ O6 X/ j+ J2 I; H
& h& b9 y% A! c; }. o) R& l
M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
* P! X" t. Z4 u( Q: H' r
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
. a0 ~4 \* f& L( A" T7 F) e
Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
- O2 c+ ]& Z4 {$ F- x$ k$ r% c2 m) U N
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
- \3 K& F4 w, o( ?0 Z) z i! N
u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
* s# e( O$ w+ M* G/ ~7 p
w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
, A0 S& X& J# g% k0 @2 }
u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
5 K8 R# @7 X0 i* x
w4^2/u3^2*Kwa143*IIua133);
4 r) _: C& W* u% ^% @1 F$ Z$ K7 |$ E
) A/ F3 {* o: V: I& h- X
M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
q% i! l* F, t5 N+ [8 A0 q+ g
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
L" `2 a: ^ j
Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
p( H0 s! B; I! ~3 y4 L
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
, A; c: T% h8 k8 V: Y' P
u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
9 U \" p) J' l. U+ y ~. a9 O
w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
/ f# }: ?9 H7 {9 t, o* i
u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
# a9 T3 l2 a# h0 f3 D# }8 z5 f
w4^2/u3^2*Kwa143*IIua133);
2 l2 E/ A% V: ?+ V
: I: {3 k1 ]% x/ M/ [
M3 = (betacl*Kwa143*
9 [/ N& r! k" z [* K. F; F4 T* S
Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
0 E8 N* y4 O% n+ M& l
u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
0 l$ M. v' ?0 _! ~( b7 }4 P2 h
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
( j& F# A7 B! L8 [
u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*
1 |* z- i4 S. ~' G5 J+ B; z
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
0 B ^' T+ r: s
w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
" S0 X; [3 N9 d# A
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
6 r, U) K2 K0 G' l7 e1 o) a& }) j
w4^2/u3^2*Kwa143*IIua133);
: J. `9 v1 U1 @# f+ ]
* V7 I( L! {) Y8 U. s+ o
M4 = (betacl*Kwa143*
- C; L: s6 [8 k5 |9 P
Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 -
6 X0 O' p. {& ?1 b
u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*
! d; ~4 @8 G# X% S( p# l9 W9 M
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
3 _, g& v6 A. a5 C5 T8 z. h
u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*
) O' V% n& O2 p0 m1 t
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
. s" {/ y0 ?) F5 I! b
w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
. g' M* r! u3 D) F
Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
) {3 W* ^7 J3 D& ]8 }1 C
w4^2/u3^2*Kwa143*IIua133);
, Q' B/ D7 X$ @4 E: D& E
! M" D/ V6 h2 ]- f6 T/ U$ M
R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
: ~( W$ T6 Z, Q4 a+ c" Z% E+ p$ s
T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
6 O" R7 O/ C* H0 L/ i4 s5 a
U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
4 o3 M9 i/ B& A; P8 e
V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
+ Y. M4 I2 ^0 M3 e3 _
- G- c' T0 n1 G
R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
, F! I, ]. r! y0 X2 I p( a
T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
R. g) i: Z3 Y1 J! Z
U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
- v* n! h" R- `7 }1 a
V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
7 N0 d5 t) M" V, J# c5 X5 g l& K9 M
& L, |6 B# X b) v0 }7 a
xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 +
$ N6 d% X8 T, {$ l
V1*M4);
4 u4 l) b' d# m* \6 N) W1 @
xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
" [3 ?, c, g( O
V2*M2);
' k4 {- @" z, `2 O% \
! f& Z$ w& a1 E, s3 h
x = xicl1 - xicl2;
5 S( `! N9 {# N! \' P
x1 = Re[x];
2 E# V1 C% K+ f+ N2 L% P: B# D7 p
x2 = Im[x];
3 t' K3 G' O8 u: U: C# q
# K& S/ H1 t: u4 B% a9 [
FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
& T9 [+ j/ K, d
]
! e/ G! } k1 g; `8 b
) z: b' Z& r4 h7 G
复制代码
代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}
+ W& U6 ^& P# J3 G; R
但我把
FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
! h" S1 g8 D( j. Y& q
换成
) e4 \' f9 m0 R
For[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;
7 [" F7 |+ G/ N7 i: T8 P
FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];
; [, |# t6 N! m, n; Z) ?
]
* }: E9 T$ ]- z4 ~2 Q
就会出现
o" i5 B) _. E' k. u
FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
+ c9 k# C, ^# @6 |3 S% L' d
$ d- J! I/ _5 M5 V, T, ~$ {
请问是怎么回事?
* S7 o- }3 z+ e9 I% `/ _
2 W3 D3 ]; I6 l4 J6 Y9 J5 d0 u8 u7 B
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5