数学建模社区-数学中国
标题:
请问FindRoot外面套一个For循环的问题
[打印本页]
作者:
cxy623157929
时间:
2015-6-2 12:57
标题:
请问FindRoot外面套一个For循环的问题
lamda = 1.55 10^-6;
* @* I7 [7 |- X$ Q2 ] y& v
k0 = 2*Pi/lamda;
# l7 ]; a$ h, f& Z* O
n1 = 1.4677;(*纤芯折射率*)
& _/ z/ j- z# e, L9 U9 a
n2 = 1.4628;(*包层折射率*)
7 E* s6 {1 c1 K7 V
n3 = 0.469 + 9.32*I;(*银折射率*)
{: D8 t! f3 `0 M* `- L8 L
a1 = 4.1 10^-6;(*纤芯半径*)
! w9 w3 l' |( m7 S7 D
a2 = 62.5 10^-6;(*包层半径*)
+ O4 v) h( y8 ^
d = 40 10^-9;(*金属厚度*)
+ O( |7 T/ k, c
a3 = a2 + d;
' o) [6 a/ ~1 {+ S5 b, p
mu = Pi*4 10^-7;(*真空磁导率*)
" o. r7 u8 q( R( @
epsi0 = 8.85 10^-12;(*介电常数*)
2 C/ K/ A( S$ Y: ^
: l9 `! k+ w, v% |" y
n4 = 1.330;
8 ^ y. k6 ]9 D: ~! F+ F/ Q
* l* L; c' i3 o. k
neffcl = neffclre + neffclim*I;
5 P0 A* E$ g3 s% ^
9 `5 ]+ F' j0 C2 i* G- ~) N- M; Y
betacl = k0*neffcl;
* p$ d- s3 \1 k* W; |
omega = 2*Pi*299792458/lamda;
+ [) [2 \9 y5 o0 ~6 X
- K& ^- {) u: ^5 z: W7 A
epsi1 = n1^2*epsi0;
. K# L: f- i6 ^1 R, A
epsi2 = n2^2*epsi0;
; R7 c) [8 |. @+ s
epsi3 = n3^2*epsi0;
" l( ^# l/ x' S T
epsi4 = n4^2*epsi0;
7 T& i( {- _# q! `5 C
8 }( z& O/ K/ t8 a4 J
u1 = k0*Sqrt[neffcl^2 - n1^2];
+ I) ?& ^) \/ G1 o. s
u2 = k0*Sqrt[neffcl^2 - n2^2];
* E: l% {) j- R8 p3 k
u3 = k0*Sqrt[neffcl^2 - n3^2];
" e" Z) o8 M4 }: J4 G) f
w4 = k0*Sqrt[neffcl^2 - n4^2];
% j: i2 U- p5 @4 Z# W. U+ J
$ G! H1 K9 ~5 R$ {) q* g n9 v
Iua111 = BesselI[1, u1*a1];
; a5 g1 l2 N2 v* i8 ^4 T5 G* M7 B
Iua121 = BesselI[1, u2*a1];
. C' H9 ?. \& L2 f
Iua122 = BesselI[1, u2*a2];
, x0 j5 s! m/ g' ?3 U9 C
Iua132 = BesselI[1, u3*a2];
6 d, L' V2 Q# p( S* x5 \# m
Iua133 = BesselI[1, u3*a3];
2 n. L5 a) J$ Y: l; X y
IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
' E, O; T! x6 ^: G
IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;
8 ^+ m6 e0 A! ~ g0 n: F8 O4 X( Y; V% _
IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
$ r/ q0 h: j; @4 Y0 ^' L7 o
IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
( L8 x! A8 U/ K' y% |4 H+ ^" j
IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
+ \* b) ~; d& _
+ `0 r( Z8 ^0 E: A5 r" e+ `
Kua121 = BesselK [1, u2*a1];
. |- t \; S! v! {
Kua122 = BesselK [1, u2*a2];
) @" Y+ W+ G/ h: P9 g
Kua132 = BesselK [1, u3*a2];
* a8 L: p$ U3 h/ e" a
Kua133 = BesselK [1, u3*a3];
. j- U# A6 x4 q
Kwa143 = BesselK [1, w4*a3];
* ?! @3 ^2 O% p, O
KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;
/ i' W7 {* z7 w* _3 O4 w; a- i
KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
/ o- D" A. E6 D% H: e `3 e
KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;
6 Z. K. h1 l- L
KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
+ r7 ^3 {( \2 T, x- ?$ J2 I4 I
KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
$ [; b4 [, V: P- C
/ J! c5 ~ P0 i
H1 = (betacl*Kwa143*
+ J6 v( O6 o: H$ ?4 }' Z7 A
Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
1 t* H; N" A0 i* _
Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
+ N `, g2 B) a- v! ^
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
7 N5 g1 \6 E. ]8 L& n) c g
Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
. m( u( I5 v8 q0 g) i5 Y2 t Q# x
Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
* i) `4 K3 g7 E) V8 H6 R# B
Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
) Q) K; T5 Y9 x+ V
Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
8 j3 O* j* s- K8 `4 H
Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
1 O8 f$ k) H; z, D7 v, {! ^/ @2 _+ l
* ?6 Y6 p. s0 |# E
H2 = (betacl*Kwa143*
7 m& {; Q7 e d7 D6 S
Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
; l- D9 c% V9 C8 p' | V* I' j
Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
* ?; H, X" s0 m( C0 l+ L
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
+ ^$ T3 t1 z7 |+ d
Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
9 d7 K& ~) Z+ B
Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
) ]: q# X4 Z$ o
Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
0 ?5 Z S9 B' _* E9 n; u+ s
Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
) s& O. {) Q: V2 c) e
Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
; ] d8 g, ?: v" Y5 O
7 O/ y. u* D) f0 {! i
H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
0 F' A# x5 A) S: a/ W9 p
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
- P9 W: ?9 w& a/ o7 Z
Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
/ G$ x6 l, x ~, q2 s
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
2 f) c) D* a/ \0 ?; k& ]) D
Kua122 -
$ y$ H% C5 }- R7 x; e
u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
% x5 e6 C( L7 Q. Y% K0 l
w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
) }, L/ p& V: S( {
u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
: g# {0 L2 x5 l
w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
! W1 @- l0 o' g* J7 e" }' k2 d! t# C
) m# J% P* n6 B3 Y4 V
H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
! m& a r$ U2 E, @0 v- ~) H: n
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
7 k$ o! j/ u1 I- i2 ?! V
Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
L1 S' g M2 a: k( ^/ ]
Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
; q2 @0 K( j- T2 [$ M
Iua122 -
/ J+ ]8 n. A) X. \4 G2 I% o9 c
u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
6 F* s( T, v8 [" P/ Q7 l
w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
+ U0 S! Z" l" v
u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
4 a- A" V S7 F; M" p1 O6 b" ]
w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
- Y- n" Z V& ^2 j9 ~
) _7 `' |3 Z I2 _- J& ~
M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
7 ^# ^, Y& y, \* `1 B4 y
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
+ P- J- y5 j0 b, C
Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
$ G+ R1 _' b* g5 _' e8 R
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
1 V8 ] H& F" _
u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
* W& R7 R& P4 D+ m* M4 k9 D
w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
8 e0 v4 |6 L& _# m1 t' A
u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
4 \( t4 i" b; W( \& [
w4^2/u3^2*Kwa143*IIua133);
N, ]- m0 a, }3 u5 R3 W
; t8 R& t+ ?6 Y% Z F6 E5 Q
M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
; Z4 z j: }8 N5 A9 `( a$ ]
Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
$ S4 I3 I$ i& G) O6 O2 P& Q, W' s( M
Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
% N8 R. E# g+ w8 S: U8 @
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
' E7 q w) e4 [0 n$ K* B; e/ _, [
u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
8 d# \; b. Z) H- y: [" J& Q2 S
w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
6 I/ a; E# `4 Z. D8 U9 F
u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
: _# h, V9 |* s g+ h! n% [
w4^2/u3^2*Kwa143*IIua133);
3 u3 Z% o1 }$ x/ V) M: Z
! e. m% I0 G4 o, D
M3 = (betacl*Kwa143*
: F) j% U* ]. L5 K ~
Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
* h# c, u6 v) H8 `0 b' x0 z& d5 f o4 m
u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
2 F7 t8 e# G3 I" _2 b, e
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
9 M0 y$ G( R: N* l I5 j- e5 m
u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*
9 e4 z8 @0 b$ k1 Q! n0 }' h
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
2 |9 ]% E7 I; d7 N5 ~4 M( o
w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
" H3 G; j% ~" K. v1 Z( I5 {0 f
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
, h1 p! {# X/ Q- K/ H
w4^2/u3^2*Kwa143*IIua133);
4 A# ^8 T; n5 k& G+ O
+ `# |% q+ J% K( G4 s6 Y# h
M4 = (betacl*Kwa143*
: [1 d# C2 {0 G D0 \3 a
Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 -
& ?4 L6 t: _5 Q& I5 s$ s4 a
u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*
. D" u2 _; m7 e& r" G4 i
Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
% R- F, D- L/ e( [
u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*
. R4 Z! F- B: G! l5 R# n1 G+ Z
Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
9 Y$ q3 M% q9 n. H
w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
) Y( k/ m- C. L) H' h% M* l
Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
- T: N; \0 j$ M& i1 z& I+ o
w4^2/u3^2*Kwa143*IIua133);
_1 s! \- a+ d" \
/ k* B! P- Y5 a, M- j( k4 q6 X
R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
- r3 Y2 k$ P. e7 W! f
T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
# ]% G! e, a& k4 _9 {8 q6 a
U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
4 q8 N; E* c3 i/ Y# ~9 E1 a7 d
V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
3 H5 r7 i' o- B0 z/ f0 E( |3 u
$ b8 A, f/ Z* \3 x) T+ [+ r1 Y2 Z
R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
% F5 _( U. R) k8 x
T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
# s$ D( E& c/ P# }
U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
1 {- w7 J! A" f) ~, i( ~
V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
8 J6 _) Q4 U5 O$ B: {" K; J$ B
0 u9 i% {! h( \5 T4 O b
xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 +
' l5 d+ \7 \6 x9 F) s1 A7 g
V1*M4);
$ {- n6 l- K' f! J
xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
4 l0 k* h. n4 t5 p% ]
V2*M2);
3 U) j! |2 }3 J8 g8 B/ b& `
; k9 s8 {( y3 b/ Y* v: E, K, e4 U
x = xicl1 - xicl2;
4 a/ M# \! y5 _
x1 = Re[x];
0 m- D/ w5 V, X O
x2 = Im[x];
; _8 L. c! Q+ M
, A4 d' m1 d5 `) \* x
FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
9 O% `0 o; j/ _; e
]
8 ]' F; b% J* N9 A% A* T3 |
f8 F( _& c% I3 g
复制代码
代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}
0 |6 c+ P% _: a% B
但我把
FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
' g6 x8 d+ @) |2 ^5 r% }7 v% @" G
换成
0 ?0 n1 {) D& v3 W
For[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;
: B: V% _$ l; X- H
FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];
; O+ t5 ?& z5 M) y7 ]9 {
]
6 e4 `" M7 E E' l* [8 K
就会出现
8 }8 Y) A6 O5 _# y+ |3 C
FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
: e$ H4 N4 ^2 N$ M
& V8 ]. z' P* a' m6 t% S
请问是怎么回事?
T. y7 u7 S$ @9 r; b1 k
0 c% g" @, e, g- i# ^0 S+ _0 h
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5