内容简介:; f+ F1 S3 Y" {8 W) p. A 本书从实际应用的角度出发,以大量的案例详细介绍了MATLAB环境下的统计分析与应用。本书主要内容包括:利用MATLAB制作统计报告或统计报表;从文件中读取数据到MATLAB;从MATLAB中导出数据到文件;数据的平滑处理、标准化变换和极差归一化变换;生成一元和多元分布随机数;参数估计与假设检验;Copula理论及应用实例;方差分析;基于回归分析的数据拟合;聚类分析;判别分析;主成分分析;因子分析;图像处理中的统计应用等。0 Q2 o2 Q1 [# `4 d3 v 本书可以作为高等院校本科生、研究生的统计学相关课程的辅导教材或教学参考书,也可作为从事数据分析与数据管理的研究人员的参考用书。 前 言:- a) H3 l( V0 }, |4 } MATLAB、SAS、Spss、Splus、R语言等软件都可用作统计计算与分析,在这些软件中,MATLAB的功能无疑是最强大的,它有“草稿纸式”的编程语言,还有包罗万象的工具箱,用起来非常容易上手,用户不仅可以调用其内部函数作“傻瓜式”的计算,还可以根据自己的算法进行扩展编程。可以说,它就是计算软件中的“航空母舰”。试问读者朋友们,你们是想拥有一艘普通的“战舰”,还是想拥有一艘无所不能的“航空母舰”呢? ; Q0 b1 e1 j* F( E 在我们的生活中,统计无处不在,大到国家的国计民生,小到个人的生活起居,无不与统计息息相关,与统计有关的论著也如春日繁花,种类繁多。就目前情况来看,市面上有关统计与MATLAB结合的论著并不多见,并且大多只是MATLAB统计工具箱的英文翻译,或者在概率论与数理统计的教材里加了一些MATLAB代码,它们普遍存在的问题就是缺乏具体的案例分析,并且在统计的应用方面缺乏创新。本书仅以较少篇幅介绍MATLAB统计工具箱函数的调用方法,将通过大量的案例分析介绍MATLAB在统计方面的应用。本书内容分12章,另有2个附录,共涉及39个大的案例,其中有些大案例下还包含了一些小的案例。本书章节是这样安排的:第1章,利用MATLAB生成Word和Excel文档;第2章,数据的导入与导出;第3章,数据的预处理;第4章,生成随机数;第5章,参数估计与假设检验;第6章,Copula理论及应用实例;第7章,方差分析;第8章,数据拟合;第9章,聚类分析;第10章,判别分析;第11章,主成分分析;第12章,因子分析;附录A,图像处理中的统计应用案例;附录B,MATLAB统计工具箱函数大全。其中利用MATLAB与Word和Excel接口技术生成Word和Excel文档属作者原创性成果,利用这一技术可以很方便的生成各种统计报告或统计报表。另外本书还涉及5个基于统计方法的图像处理案例,包括从图像资料中提取绘图数据并进行曲线拟合,灰度图像和真彩图像的分割,从固定背景视频中识别运动目标,手写体数字识别,图像压缩等。这些都是传统统计软件所不能解决的问题,也是传统教材没有涉及的问题。 目录:8 P. Z) a9 B4 ?# }# @$ I 第1章 利用MATLAB生成WORD和EXCEL文档; t& d; c. o% Q/ K& m 1.1 组件对象模型(COM)* N I5 [4 H; A3 e6 X( n' k 1.1.1 什么是COM4 ? y9 `4 F( c: _6 ~3 h 1.1.2 COM接口 1.2 MATLAB中的ACTIVEX控件接口技术5 `0 G2 ^! m! J2 L 1.2.1 actxcontrol函数 1.2.2 actxcontrollist函数/ s+ \3 ?, ~, N0 F/ I h' ` J 1.2.3 actxcontrolselect函数! d, v( H) b% ]& C 1.2.4 actxserver函数: l: a1 m* Y- b 1.2.5 利用MATLAB调用COM对象* i$ V9 J3 x: H0 p# K 1.2.6 调用actxserver函数创建组件服务器9 p9 W. ] d* Q' B7 X0 f# S 1.3 案例1:利用MATLAB生成WORD文档' b. H& Z, F. m& T 1.3.1 调用actxserver函数创建MicrosoftWord服务器 1.3.2 建立Word文本文档 1.3.3 插入表格 1.3.4 插入图片. @9 u2 ?7 R3 y 1.3.5 保存文档1 Z4 d9 g' a" H( H2 }% B% a 1.3.6 完整代码0 @6 [; r- e4 F" r$ K' [: c, y 1.4 案例2:利用MATLAB生成EXCEL文档 1.4.1 调用actxserver函数创建MicrosoftExcel服务器' f. `0 }$ f7 A+ R; A+ Q+ Y 1.4.2 新建Excel工作簿 1.4.3 获取工作表对象句柄! r# k& a" _* D; g4 x 1.4.4 插入、复制、删除、移动和重命名工作表 1.4.5 页面设置 1.4.6 选取工作表区域 1.4.7 设置行高和列宽 1.4.8 合并单元格: M- o3 o q% `* J0 d 1.4.9 边框设置, w4 t4 ?4 [& c8 j7 k9 V! ` 1.4.10 设置单元格对齐方式 1.4.11 写入单元格内容" a- q: i9 R! N0 G& ~. T 1.4.12 插入图片8 D6 C: K5 T1 |& Z 1.4.13 保存工作簿 1.4.14 完整代码- \# O, u3 o) j$ _4 F 第2章 数据的导入与导出" R! i: {$ N; X4 P- y( [' Z 2.1 案例3:从TXT文件中读取数据- Y' ]7 I& F! T" m+ ~ 2.1.1 利用数据导入向导导入TXT文件 2.1.2 调用高级函数读取数据; `; A4 o: Z" n7 z- n2 k 2.1.3 调用低级函数读取数据9 }) c* N* c$ t5 a" `( @ 2.2 案例4:把数据写入TXT文件: h! b1 }: k9 ]+ S! X 2.2.1 调用dlmread函数写入数据 2.2.2 调用fprintf函数写入数据 2.3 案例5:从EXCEL文件中读取数据- d2 X9 S m9 R 2.3.1 利用数据导入向导导入Excel文件! P) N6 F( G' y$ k0 y# f 2.3.2 调用xlsread函数读取数据 2.4 案例6:把数据写入EXCEL文件" |) s5 e/ }& r0 N; P9 U' Q6 F5 r' s* G * L0 q) ~4 F! ?) g' | 第3章 数据的预处理 3.1 案例7:数据的平滑处理 3.1.1 smooth函数/ d; b/ L! A. o2 M3 E L# I; _ 3.1.2 smoothts函数 3.1.3 medfilt1函数& ?% L! A8 D8 ?8 t 3.2 案例8:数据的标准化变换: Y: _9 F" s4 {6 t4 B2 C' Q% _ 3.2.1 标准化变换公式& n# P% d) g1 [4 i P n% l. D 3.2.2 标准化变换的MATLAB实现 3.3 案例9:数据的极差归一化变换- m3 H0 O! f* {/ `# a1 L 3.3.1 极差归一化变换公式 3.3.2 极差归一化变换的MATLAB实现* }* c1 Y# M2 z( p8 E 0 x: Z. Q. X1 r9 t B* w: F 第4章 生成随机数4 K2 J! Q( M$ Z$ c _ 4.1 案例10:生成一元分布随机数 4.1.1 均匀分布随机数和标准正态分布随机数 4.1.2 RandStream类& C; O% Y3 P, J$ A5 }( T2 o6 G 4.1.3 常见一元分布随机数) I+ \5 J: w3 z4 E& n 4.1.4 任意一元分布随机数7 v$ P4 k5 a/ S* \/ r 4.2 案例11:生成多元分布随机数 4.3 案例12:蒙特卡洛方法# T5 l+ b/ E2 w6 k& d) E 4.3.1 有趣的蒙提霍尔问题 4.3.2 抽球问题的蒙特卡洛模拟 4.3.3 用蒙特卡洛方法求圆周率 4.3.4 用蒙特卡洛方法求积分 4.3.5 街头骗局揭秘 / w. J2 m/ Z( y s8 S; t0 G/ E 第5章 参数估计与假设检验* s% x5 E+ |. T6 ]; ` 5.1 案例13:常见分布的参数估计" K: z; ^ v* R( W 5.2 案例14:正态总体参数的检验 5.2.1 总体标准差已知时的单个正态总体均值的检验$ L/ f% |- u# M( Z7 r' `) V$ s$ D 5.2.2 总体标准差未知时的单个正态总体均值的检验 5.2.3 总体标准差未知时的两个正态总体均值的比较检验 5.2.4 总体均值未知时的单个正态总体方差的检验 5.2.5 总体均值未知时的两个正态总体方差的比较检验2 _" C1 P3 F2 \$ n 5.3 案例15:分布的拟合与检验 5.3.1 案例描述 5.3.2 描述性统计量" E& p6 Y, O# n" K: h6 Y 5.3.3 统计图/ K, c* K5 L' i) }1 V, W 5.3.4 分布的检验) C+ ]& h; c/ u4 x$ X 5.3.5 最终的结论1 L3 u6 x: T. h5 G0 { 5.4 案例16:核密度估计( l& c& B( A4 A4 |/ F5 u+ `2 H$ H 5.4.1 经验密度函数8 y# _3 ~8 B# `# V$ J 5.4.2 核密度估计 5.4.3 核密度估计的MATLAB实现 5.4.4 核密度估计的案例分析; ]: f8 f8 a5 J; X: a& S7 Q 第6章 COPULA理论及应用实例 6.1 COPULA函数的定义与基本性质5 I1 V6 i1 T6 F& v5 b: ?: b 6.1.1 二元Copula函数的定义及性质) y- W1 _$ ~, T0 [! w 6.1.2 多元Copula函数的定义及性质 \ y: \; h, ]. s# z `- p 6.2 常用的COPULA函数 6.2.1 正态Copula函数' f8 W o9 d! p7 A( M 6.2.2 t-Copula函数 6.2.3 阿基米德copula函数 6.3 COPULA函数与相关性度量 6.3.1 Pearson线性相关系数' r! r+ q+ Z: m- @ 6.3.2 Kendall秩相关系数9 S/ g6 O: ^& M ~1 L+ ]2 s) E3 m 6.3.3 Spearman秩相关系数+ x" C5 p" S5 N8 O# w+ }" ^1 z 6.3.4 尾部相关系数! A+ f3 v8 s+ H6 l2 g( }7 ]: g 6.3.5 基于Copula函数的相关性度量 6.3.6 基于常用二元Copula函数的相关性度量 6.4 案例17:沪深股市日收益率的二元COPULA模型! [+ R$ c7 v: {- \& f. Z 6.4.1 案例描述6 f3 h/ @3 [3 V1 ^# L- o 6.4.2 确定边缘分布 6.4.3 选取适当的Copula函数7 K/ n8 \! a2 I( T 6.4.4 参数估计% c" e9 v4 r- t* h3 s+ L 6.4.5 与Copula有关的MATLAB函数 6.4.6 案例的计算与分析 第7章 方差分析 7.1 案例18:单因素一元方差分析! k' u: P1 x0 c$ B- U7 w& A 7.1.1 单因素一元方差分析的MATLAB实现5 Y( O" K) q& U. k5 V0 Q! l 7.1.2 案例分析 7.2 案例19:双因素一元方差分析7 O: ^" t- S8 n' ^: D A 7.2.1 双因素一元方差分析的MATLAB实现 7.2.2 案例分析 7.3 案例20:多因素一元方差分析+ L& O2 k+ a5 Z9 d. }6 q 7.3.1 多因素一元方差分析的MATLAB实现; [4 I" {+ ^) M+ B/ }: i9 s6 J7 _ 7.3.2 案例分析一 7.3.3 案例分析二 7.4 案例21:单因素多元方差分析 7.4.1 单因素多元方差分析的MATLAB实现1 j8 f: _1 j' v, g9 l9 E8 g! L 7.4.2 案例分析 7.5 案例22:非参数方差分析" H Q8 P& t) t2 x0 k& {& D 7.5.1 非参数方差分析的MATLAB实现 7.5.2 Kruskal-Wallis检验的案例分析 7.5.3 Friedman检验的案例分析 第8章 数据拟合 8.1 案例23:一元线性回归分析5 E Y( C6 ~. s 8.1.1 数据的散点图 8.1.2 调用regress函数作一元线性回归分析 8.1.3 调用regstats函数作一元线性回归分析 8.1.4 调用robustfit函数作稳健回归 f' M& S; V$ Q: }# V/ o$ e 8.2 案例24:一元非线性回归分析# O4 r; }; p# E- j 8.2.1 数据的散点图+ b, @7 C6 I0 T% D p7 b 8.2.2 调用nlinfit函数作一元非线性回归分析 8.2.3 利用曲线拟合工具cftool作一元非线性拟合 8.3 案例25:多重回归分析2 k& o* k( k& w0 ]& T% G7 ?* y, B7 a 8.3.1 调用自编reglm函数作多重回归分析5 h% x6 Q4 k. A3 f, K 8.3.2 调用stepwise函数作逐步回归 第9章 聚类分析 9.1 聚类分析简介 9.1.1 距离和相似系数 9.1.2 系统聚类法. C+ x/ o0 V: ?9 g/ u# J, G 9.1.3 K均值聚类法 9.1.4 模糊C均值聚类法 9.2 案例26:系统聚类法的案例分析5 k* Q# o) P0 j m" t. i/ Z4 s( P' P 9.2.1 系统聚类法的MATLAB函数 W) B5 h1 N1 A# C) {& s: ^) Y 9.2.2 样品聚类案例+ D% @7 \! V! m* b 9.2.3 变量聚类案例 9.3 案例27:K均值聚类法的案例分析 9.3.1 K均值聚类法的MATLAB函数 9.3.2 K均值聚类法案例 9.4 案例28:模糊C均值聚类法的案例分析' |- ~, d- b, s+ ~3 ~6 e0 x8 E: `; } 9.4.1 模糊C均值聚类法的MATLAB函数6 O2 A2 H, {2 m, h% X 9.4.2 模糊C均值聚类法案例( e3 r% Z5 v5 k' c# g: s0 b 第10章 判别分析 10.1 判别分析简介 10.1.1 距离判别' n L' M* C+ }3 m8 R+ G: }% r/ P 10.1.2 贝叶斯判别9 s+ G+ Z) l$ T5 a8 n& Q 10.1.3 Fisher判别 10.2 案例29:距离判别法的案例分析 10.2.1 classify函数 10.2.2 案例分析! @; y( A+ Z- r/ I5 a8 J! g- f( o 10.3 案例30:贝叶斯判别法的案例分析 10.3.1 NaiveBayes类: L9 N( R2 D# ]) i5 C8 E 10.3.2 案例分析 @' S- x; B+ k, H, h 10.4 案例31:FISHER判别法的案例分析2 j& P( @* V% H 10.4.1 Fisher判别分析的MATLAB实现 10.4.2 案例分析 第11章 主成分分析2 Z8 } S! p, p7 F. N" j 11.1 主成分分析简介 11.1.1 主成分分析的几何意义 11.1.2 总体的主成分 11.1.3 样本的主成分$ |7 g- S v' \, d$ u" k! @6 N 11.1.4 关于主成分表达式的两点说明 11.2 主成分分析的MATLAB函数$ D' i, V8 v! V' k; ?4 m4 Q 11.2.1 pcacov函数4 S. U, h: b+ B5 _; _ 11.2.2 princomp函数; T! P4 C: ^8 A 11.2.3 pcares函数 V- o# C* X7 _1 K) @ 11.3 案例32:从协方差矩阵或相关系数矩阵出发求解主成分 11.3.1 调用pcacov函数作主成分分析 11.3.2 结果分析, y4 G7 V/ K) F# ^, z 11.4 案例33:从样本观测值矩阵出发求解主成分 X* j5 x! m: @: y: d# w 11.4.1 调用princomp函数作主成分分析 11.4.2 结果分析 11.4.3 调用pcares函数重建观测数据0 f y; R* @2 [* ]5 S6 V A) R 第12章 因子分析 12.1 因子分析简介 12.1.1 基本因子分析模型; L: o# K+ |; J" i+ f3 X% U 12.1.2 因子模型的基本性质 12.1.3 因子载荷阵和特殊方差阵的估计0 |- v+ b# b( P/ _9 s/ r U 12.1.4 因子旋转# o# M x7 B+ X7 ~% h: n* a5 K8 c1 F 12.1.5 因子得分 12.1.6 因子分析中的Heywood现象' K7 a \9 ~, t8 |2 g, h 12.2 因子分析的MATLAB函数 12.3 案例34:基于协方差矩阵或相关系数矩阵的因子分析 12.4 案例35:基于样本观测值矩阵的因子分析& j4 J a, i" @4 e/ k 12.4.1 读取数据 12.4.2 调用factoran函数作因子分析 / z; y+ M: p' w6 q 附录A 图像处理中的统计应用案例 案例36:基于图像资料的数据重建与拟合% r, {* z% D# U2 F' g# M) Z6 X 1.1.1 案例描述 1.1.2 重建图像数据 1.1.3 曲线拟合% b/ [% h6 y) | 案例37:基于K均值聚类的图像分割( ?4 m( Z! b/ E7 z8 a4 ]# X& x 1.2.1 灰度图像分割案例 1.2.2 真彩图像分割案例 案例38:基于中位数算法的运动目标检测 1.3.1 案例描述2 P0 I: c7 D! S; a6 T' [ 1.3.2 中位数算法原理+ A1 \. T1 _1 O( U0 f7 w, |! n3 ^, M 1.3.3 本案例的MATLAB实现一0 k/ J! y L0 ?" u9 {$ A 1.3.4 本案例的MATLAB实现二2 {% `" z& I5 v) E 案例39:基于贝叶斯判别的手写体数字识别 1.4.1 样本图片的预处理$ ^6 f9 `# E4 k2 Q 1.4.2 创建朴素贝叶斯分类器对象 1.4.3 判别效果- W, W2 I0 j0 m( G q/ O0 ?8 j3 g 案例40:基于主成分分析的图像压缩与重建, T, Q3 L* L N& m, ] 1.5.1 基于主成分分析的图像压缩与重建原理 1.5.2 图像压缩与重建的MATLAB实现 附录B MATLAB统计工具箱函数大全 ![]() |
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) | Powered by Discuz! X2.5 |