数学建模社区-数学中国

标题: 数学建模常用算法—搜索算法 [打印本页]

作者: 百年孤独    时间: 2016-3-2 14:38
标题: 数学建模常用算法—搜索算法
一、回溯算法  回溯算法是所有搜索算法中最为基本的一种算法,其采用了一种“走不通就掉头”思想作为其控制结构,其相当于采用了先根遍历的方法来构造解答树,可用于找解或所有解以及最优解。具体的算法描述如下: [非递归算法]
<Type>  Node(节点类型)=Record
 Situtation:TSituation(当前节点状态);
 Way-NInteger(已使用过的扩展规则的数目);
End
<Var>
 List(回溯表):Array[1..Max(最大深度)] of Node;
 pos(当前扩展节点编号):Integer;
<Init>
 List<-0;
 pos<-1;
 List[1].Situation<-初始状态;
<Main Program>
 While (pos>0(有路可走)) and ([未达到目标]) do
 Begin
  If pos>=Max then (数据溢出,跳出主程序);
   List[pos].Way-N=List[pos].Way-No+1;
  If (List[pos].Way-NO<=TotalExpendMethod) then (如果还有没用过的扩展规则)
  Begin
   If (可以使用当前扩展规则) then
   Begin
    (用第way条规则扩展当前节点)
    List[pos+1].Situation:=ExpendNode(List[pos].Situation,List[pos].Way-NO);


    List[pos+1].Way-N=0;
    pos:=pos+1;
   End-If;
  End-If
  Else Begin
   pos:=pos-1;
  End-Else
 End-While;
  [递归算法]

Procedure BackTrack(Situation:TSituation;deepth:Integer);

Var I :Integer;
Begin
 If deepth>Max then (空间达到极限,跳出本过程);
 If Situation=Target then (找到目标);
 For I:=1 to TotalExpendMethod do
  Begin
   BackTrack(ExpendNode(Situation,I),deepth+1);
 End-For;
End;
 范例:一个M*M的棋盘上某一点上有一个马,要求寻找一条从这一点出发不重复的跳完棋盘上所有的点的路线。

 评价:回溯算法对空间的消耗较少,当其与分枝定界法一起使用时,对于所求解在解答树中层次较深的问题有较好的效果。但应避免在后继节点可能与前继节点相同的问题中使用,以免产生循环。

  二、深度搜索与广度搜索

深度搜索与广度搜索的控制结构和产生系统很相似,唯一的区别在于对扩展节点选取上。由于其保留了所有的前继节点,所以在产生后继节点时可以去掉一部分重复的节点,从而提高了搜索效率。这两种算法每次都扩展一个节点的所有子节点,而不同的是,深度搜索下一次扩展的是本次扩展出来的子节点中的一个,而广度搜索扩展的则是本次扩展的节点的兄弟节点。在具体实现上为了提高效率,所以采用了不同的数据结构.

 [广度搜索]

<Type>

 Node(节点类型)=Record
 Situtation:TSituation(当前节点状态);
 Level:Integer(当前节点深度);
 Last :Integer(父节点);
End
<Var>
 List(节点表):Array[1..Max(最多节点数)] of Node(节点类型);
 open(总节点数):Integer;
  close(待扩展节点编号):Integer;
 New-S:TSituation;(新节点)
<Init>
 List<-0;
 open<-1;
 close<-0;
 List[1].Situation<- 初始状态;
 List[1].Level:=1;
 List[1].Last:=0;
<Main Program>
 While (close<open(还有未扩展节点)) and
  (open<Max(空间未用完)) and
  (未找到目标节点) do
 Begin
   close:=close+1;
  For I:=1 to TotalExpendMethod do(扩展一层子节点)
  Begin
   New-S:=ExpendNode(List[close].Situation,I);
   If Not (New-S in List) then
    (扩展出的节点从未出现过)
   Begin
    open:=open+1;
    List[open].Situation:=New-S;
    List[open].Level:=List[close].Level+1;
    List[open].Last:=close;
   End-If
  End-For;
 End-While;


  [深度搜索]
<Var>

 Open:Array[1..Max] of Node;(待扩展节点表)
 Close:Array[1..Max] of Node;(已扩展节点表)
 openL,closeL:Integer;(表的长度)
 New-S:Tsituation;(新状态)
<Init>
 Open<-0; Close<-0;
 OpenL<-1;CloseL<-0;
 Open[1].Situation<- 初始状态;
 Open[1].Level<-1;
 Open[1].Last<-0;
<Main Program>
 While (openL>0) and (closeL<Max) and (openL<Max) do
 Begin
  closeL:=closeL+1;
  Close[closeL]:=Open[openL];
  openL:=openL-1;
  For I:=1 to TotalExpendMethod do(扩展一层子节点)
  Begin
   New-S:=ExpendNode(Close[closeL].Situation,I);
   If Not (New-S in List) then
   (扩展出的节点从未出现过)
   Begin
    openL:=openL+1;
    Open[openL].Situation:=New-S;
    Open[openL].Level:=Close[closeL].Level+1;
    Open[openL].Last:=closeL;
   End-If
  End-For;
End;
 范例:迷宫问题,求解最短路径和可通路径。

评价:广度搜索是求解最优解的一种较好的方法,在后面将会对其进行进一步的优化。而深度搜索多用于只要求解,并且解答树中的重复节点较多并且重复较难判断时使用,但往往可以用A*或回溯算法代替。

第二部分 搜索算法的优化

一、双向广度搜索
广度搜索虽然可以得到最优解,但是其空间消耗增长太快。但如果从正反两个方向进行广度搜索,理想情况下可以减少二分之一的搜索量,从而提高搜索速度。
范例:有N个黑白棋子排成一派,中间任意两个位置有两个连续的空格。每次空格可以与序列中的某两个棋子交换位置,且两子的次序不变。要求出入长度为length的一个初始状态和一个目标状态,求出最少的转化步数。
 问题分析:该题要求求出最少的转化步数,但如果直接使用广度搜索,很容易产生数据溢出。但如果从初始状态和目标状态两个方向同时进行扩展,如果两棵解答树在某个节点第一次发生重合,则该节点
所连接的两条路径所拼成的路径就是最优解。
f1d1d5d59e3b51e03a0f2118bb2d5731.jpg 69a07e1d8a450f2782beacf5b804ade5.jpg


作者: 百年孤独    时间: 2016-3-2 14:39
对广度搜索算法的改进:

 1、添加一张节点表,作为反向扩展表。

 2、在while循环体中在正向扩展代码后加入反向扩展代码,其扩展过程不能与正向过程共享一个for循环。
 3、在正向扩展出一个节点后,需在反向表中查找是否有重合节点。反向扩展时与之相同。
 对双向广度搜索算法的改进:

  略微修改一下控制结构,每次while循环时只扩展正反两个方向中节点数目较少的一个,可以使两边的发展速度保持一定的平衡,从而减少总扩展节点的个数,加快搜索速度。

 二、分支定界
 分支定界实际上是A*算法的一种雏形,其对于每个扩展出来的节点给出一个预期值,如果这个预期值不如当前已经搜索出来的结果好的话,则将这个节点(包括其子节点)从解答树中删去,从而达到加快搜索速度的目的。
范例:在一个商店中购物,设第I种商品的价格为Ci。但商店提供一种折扣,即给出一组商品的组合,如果一次性购买了这一组商品,则可以享受较优惠的价格。现在给出一张购买清单和商店所提供的折扣清单,要求利用这些折扣,使所付款最少。
问题分析:显然,折扣使用的顺序与最终结果无关,所以可以先将所有的折扣按折扣率从大到小排序,然后采用回溯法的控制结构,对每个折扣从其最大可能使用次数向零递减搜索,设A为以打完折扣后优惠的价格,C为当前未打折扣的商品零售价之和,则其预期值为A+a*C,其中a为下一个折扣的折扣率。如当前已是最后一个折扣,则a=1。

  对回溯算法的改进:

 1、添加一个全局变量BestAnswer,记录当前最优解。

2、在每次生成一个节点时,计算其预期值,并与BestAnswer比较。如果不好,则调用回溯过程。


作者: lpsszhm    时间: 2019-3-15 15:35






欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5