数学建模社区-数学中国
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
[打印本页]
作者:
箫剑→残念
时间:
2016-10-25 16:51
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
function parafit
7 x Y/ V) h2 @0 S. d
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
2 l+ R( b" u! |4 B
% k6->k6 k7->k7
# D' [4 y1 w; {0 Z3 V
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
W% t" l! |% _* c$ z
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
# g, C) O1 g) M0 M/ b, j) w
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
8 N( i) h( G3 X7 Q M' e' [
% dLadt = k(7)*C(Hmf);
) y/ E, B) E+ M/ M0 a
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
/ @ m& w& c+ K' n9 k6 K& F$ s- G
clear all
: N" l) u1 T1 v8 I
clc
& B! {: J0 C5 y$ w% k N- `
format long
$ U* y) r& s* l5 H/ k# ?/ A
% t/min Glc Fru Fa La HMF/ mol/L
7 q! g# r& u5 }" M: ^/ p% `
Kinetics=[0 0.25 0 0 0 0
2 O# l) v5 b( `
15 0.2319 0.01257 0.0048 0 2.50E-04
- E- h& b y; c2 v: V5 A6 @: `
30 0.19345 0.027 0.00868 0 7.00E-04
) J }& s4 Y; t
45 0.15105 0.06975 0.02473 0 0.0033
3 Y& a0 `! h# ~: T6 N
60 0.13763 0.07397 0.02615 0 0.00428
\* `. u4 U, B( @1 _
90 0.08115 0.07877 0.07485 0 0.01405
. f K+ X9 c$ `2 w* |) X- ?
120 0.0656 0.07397 0.07885 0.00573 0.02143
+ X# b0 H' q" Z* y- u/ q
180 0.04488 0.0682 0.07135 0.0091 0.03623
1 l9 M [- f" U0 W
240 0.03653 0.06488 0.08945 0.01828 0.05452
; S- ^4 a( G, E6 n
300 0.02738 0.05448 0.09098 0.0227 0.0597
, R* L3 X! K7 a6 e! N3 {6 n; d
360 0.01855 0.04125 0.09363 0.0239 0.06495];
# G5 a3 i a' {) ]. e
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
1 ~: J# `2 q5 g
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
3 Q6 T. I- t; l
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
0 }4 Y% ~1 U( {
x0 = [0.25 0 0 0 0];
1 r v' s! ?7 c# l# t
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
- u, h5 h: D4 \) d
% warning off
3 o$ F% D b3 ^/ E
% 使用函数 ()进行参数估计
: ^4 ]8 }' x) H0 `; n2 d/ T
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
/ s/ C _ N) s2 I) t6 V* `
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
" l2 b9 f5 k* F! o5 W" y
fprintf('\tk1 = %.11f\n',k(1))
- R+ `1 o; X# ?( ~& t
fprintf('\tk2 = %.11f\n',k(2))
8 } ~1 k: F8 S
fprintf('\tk3 = %.11f\n',k(3))
6 {% h3 p% |& g' i# Q
fprintf('\tk4 = %.11f\n',k(4))
, m4 s8 v- `& Q- a. D. i" t
fprintf('\tk5 = %.11f\n',k(5))
$ [' n: t/ [2 A; g' A
fprintf('\tk6 = %.11f\n',k(6))
/ X: u; \. b- X: Z [9 W
fprintf('\tk7 = %.11f\n',k(7))
0 ]2 y9 B. K+ _3 I- w( Q
fprintf('\tk8 = %.11f\n',k(8))
1 Y5 h- o7 [+ v: m7 g1 u' q
fprintf('\tk9 = %.11f\n',k(9))
( F+ B g6 u0 {; T$ x
fprintf('\tk10 = %.11f\n',k(10))
5 f1 A5 G) c& L, c+ A- ?! F
fprintf(' The sum of the squares is: %.1e\n\n',fval)
/ x. w6 }9 [, m5 |
k_fm= k;
0 D6 g1 l, P0 J% Q @" b; ~
% warning off
Z* Y3 T, Z* L
% 使用函数lsqnonlin()进行参数估计
1 A7 `, W: f, L% Y
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
# Z- z+ f, y( }1 G
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
A9 q6 p9 T% ~ N
ci = nlparci(k,residual,jacobian);
8 U( U0 \4 o3 G; f; `8 _' N- Q
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
8 d, d5 M6 X% S6 L# i3 e9 K
fprintf('\tk1 = %.11f\n',k(1))
) X7 Q1 B" X' M& b( k l
fprintf('\tk2 = %.11f\n',k(2))
, l- G5 b- C1 {1 t
fprintf('\tk3 = %.11f\n',k(3))
! s0 N, b( K1 }5 d) j3 R
fprintf('\tk4 = %.11f\n',k(4))
" _) U- _% W) N. l2 w
fprintf('\tk5 = %.11f\n',k(5))
5 [# e% ]" c& M3 R& a" L
fprintf('\tk6 = %.11f\n',k(6))
; {+ d- }1 B4 a. d. g4 o/ ^
fprintf('\tk7 = %.11f\n',k(7))
' L! B& _2 A8 H3 X/ `9 u
fprintf('\tk8 = %.11f\n',k(8))
4 Q% N+ y! E, J0 d2 r) G
fprintf('\tk9 = %.11f\n',k(9))
9 O9 z- f. ~& O4 T, F. W5 e
fprintf('\tk10 = %.11f\n',k(10))
5 q) \6 i' N7 M6 z3 |
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
2 r d( p2 P) f. l; I
k_ls = k;
, A7 D- N8 g1 z$ s. I
output
9 ~ T- v& v0 E, r
warning off
3 Y% p B6 j2 J5 ~# A2 M0 X U
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
* J2 L3 y2 Z& y& s: P1 t
k0 = k_fm;
' z9 R8 I; d2 K {+ Q9 u% O3 p
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
% F* D `+ n1 P7 N
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
( l9 Y$ h$ N, O2 M+ c
ci = nlparci(k,residual,jacobian);
! @5 u4 Y- O( ^& ^4 |7 f# G
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
7 t( d2 a7 k( }) S% u- A E$ d
fprintf('\tk1 = %.11f\n',k(1))
4 u3 |% i; U9 `) G& l# p1 Y
fprintf('\tk2 = %.11f\n',k(2))
4 ?" Y( R* I$ D7 H
fprintf('\tk3 = %.11f\n',k(3))
& w' }: L+ O0 F% n
fprintf('\tk4 = %.11f\n',k(4))
5 c' h* T" `( G: u9 k; y% [4 e& J3 a9 H
fprintf('\tk5 = %.11f\n',k(5))
& l6 F+ {# E; t
fprintf('\tk6 = %.11f\n',k(6))
5 w' q, g. R8 g n# c
fprintf('\tk7 = %.11f\n',k(7))
' U' }: r% I+ ~3 E
fprintf('\tk8 = %.11f\n',k(8))
0 j" D2 [( L& y& S
fprintf('\tk9 = %.11f\n',k(9))
" z; v9 q4 B4 `9 ]9 H
fprintf('\tk10 = %.11f\n',k(10))
6 C7 N l$ S7 Q2 u
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
n6 o3 Q) Y' l/ x
k_fmls = k;
6 v4 y0 }7 G+ V$ D1 [, _) g m
output
. b8 A4 e- T+ ~# j7 t2 T
tspan = [0 15 30 45 60 90 120 180 240 300 360];
i B. E, K5 f6 _) W% j
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
: T" |+ r1 Z! [, [3 A
figure;
. W3 N7 @! C1 \* z* H' C# c
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
# {' o) v9 s" U3 d/ |
figure;plot(t,x(:,2:5));
, z( C" [/ f( c' G- ^; N
p=x(:,1:5)
" Y7 e# }$ o3 v
hold on
; q" A1 Q9 k3 {
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
5 L9 z% A: f, o" j" U5 z1 s
3 o0 h. y. A2 i. L
3 j8 Y( n# ?4 q* {0 ?3 d
. A4 C% W% r: L5 Z5 w/ K
function f = ObjFunc7LNL(k,x0,yexp)
& n, h9 I% b E1 x8 Z% q
tspan = [0 15 30 45 60 90 120 180 240 300 360];
. U# X: _/ W' k; t% M1 k h( t$ f& y
[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
+ ?3 Z4 u, Y; k0 V S
y(:,2) = x(:,1);
3 M# L: z6 r2 {- |. a
y(:,3:6) = x(:,2:5);
9 n2 H4 {# J; I) B3 D: T
f1 = y(:,2) - yexp(:,2);
+ g( G' a/ l. g% Z& u
f2 = y(:,3) - yexp(:,3);
. l- `. x, Z4 M7 g# c$ X
f3 = y(:,4) - yexp(:,4);
0 f9 k) U: X; @
f4 = y(:,5) - yexp(:,5);
8 T* Q" p! s( i" J% |( T2 Q* `
f5 = y(:,6) - yexp(:,6);
) l. O# O: h) L* S; ]
f = [f1; f2; f3; f4; f5];
6 w* B0 G2 H8 `) z
: t$ e) ]' @- I1 L' F" U
L3 T( _! R$ S) J: x
0 K( j/ R% S; R
function f = ObjFunc7Fmincon(k,x0,yexp)
. u- O a$ j5 h: n& O; o% I) o
tspan = [0 15 30 45 60 90 120 180 240 300 360];
0 J+ r* ` Z- h+ R9 }
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
1 d& N8 g; ?3 S/ H ]4 o& l5 Y/ E
y(:,2) = x(:,1);
. H6 p9 h, U; v; ?. [
y(:,3:6) = x(:,2:5);
5 ~' Z# ^% R) o% h% U8 f
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
. n8 t+ T1 v2 I) n
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
8 H- ^$ W# g2 [: |3 f# s
+ sum((y(:,6)-yexp(:,6)).^2) ;
5 p4 v2 n. m" ^: p
' u. ?) Z$ {* E+ A3 u* a; E0 }
8 N2 w: G/ v4 j7 H8 A
! P& U7 U7 I+ r
' B% B( r! O) v; A% p- b: P) B
function dxdt = KineticEqs(t,x,k)
' g7 v o2 J! c |* Q
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
& X( G6 P$ c% [
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
% H" j( ~. p* X! X: X- F
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
; _6 ^6 Y {: C
dLadt = k(7)*x(5);
2 s+ d Y. m9 a9 r" U2 E8 O
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
$ K3 l) C9 a/ z5 p5 |7 A3 N
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
; Q: D5 j: s$ e/ s" P
- ^$ {% V p3 s
`9 K! }9 L3 @9 C( } T5 O
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5