数学建模社区-数学中国
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
[打印本页]
作者:
箫剑→残念
时间:
2016-10-25 16:51
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
function parafit
* @5 n; \; E& H! j
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
5 L2 K& b+ f+ t$ Y9 c, P
% k6->k6 k7->k7
4 ?& J- C3 e7 x- B$ m- F/ p8 N4 c5 t
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
' n4 [9 H5 t6 o1 d2 d
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
+ _1 O9 e0 ^; ~% r$ h+ Z) k# @
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
0 j0 R( o$ ]/ D/ J7 |6 K& A
% dLadt = k(7)*C(Hmf);
" {/ C9 U4 l2 l7 L/ M
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
# q& M, j5 a3 l, Z4 u# w
clear all
. y& r. e& O& K% g" K
clc
, c& K' T' ]5 @9 y
format long
) W5 ~. D+ H1 l. I
% t/min Glc Fru Fa La HMF/ mol/L
2 B$ z! ]7 J: \$ ]9 X
Kinetics=[0 0.25 0 0 0 0
& Q8 G" T# o9 G: [+ s A- P
15 0.2319 0.01257 0.0048 0 2.50E-04
) g6 c+ {6 H Y7 T8 D o2 ~9 [
30 0.19345 0.027 0.00868 0 7.00E-04
& T2 J5 O5 y+ P9 \& s$ @
45 0.15105 0.06975 0.02473 0 0.0033
2 u( H3 y( j5 S
60 0.13763 0.07397 0.02615 0 0.00428
; u( g' h. `" Y
90 0.08115 0.07877 0.07485 0 0.01405
2 f$ s# L6 S$ q
120 0.0656 0.07397 0.07885 0.00573 0.02143
r& H1 ]3 q8 a
180 0.04488 0.0682 0.07135 0.0091 0.03623
) I$ l& G% B; M, f2 p" r6 r
240 0.03653 0.06488 0.08945 0.01828 0.05452
* U* f4 [- Y& L# U% C
300 0.02738 0.05448 0.09098 0.0227 0.0597
" \. _+ F9 R: W9 }: G& e* A* X
360 0.01855 0.04125 0.09363 0.0239 0.06495];
$ E [, i: G/ f8 y2 j/ D
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
5 t! y) h; V$ R6 Q+ O! t
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
+ l0 B: E9 O3 T# h- w. @' _
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
3 }6 r+ V& l$ o5 `/ Y. r, ~
x0 = [0.25 0 0 0 0];
* N' N: R0 j3 ^* r$ \
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
?/ p* P1 G$ U; `
% warning off
# l/ C5 \" Q4 `& D1 ~
% 使用函数 ()进行参数估计
# N1 {; b4 @4 w- n: R
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
, S+ o1 c# L+ K1 [2 W. V. m! O
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
4 r4 ?3 d8 q& c0 ]9 k
fprintf('\tk1 = %.11f\n',k(1))
& X* i8 _" H% o
fprintf('\tk2 = %.11f\n',k(2))
" m" d$ p7 H4 ?& Z- @
fprintf('\tk3 = %.11f\n',k(3))
4 |3 l' u4 j' q% Z" C1 e$ b3 B
fprintf('\tk4 = %.11f\n',k(4))
1 p% N2 b) ^! O8 g8 I
fprintf('\tk5 = %.11f\n',k(5))
% X" s7 f+ o; B6 F8 _; x0 x
fprintf('\tk6 = %.11f\n',k(6))
2 P g, c' U2 Y
fprintf('\tk7 = %.11f\n',k(7))
3 j0 A5 k4 N9 p( o7 i5 H0 U
fprintf('\tk8 = %.11f\n',k(8))
/ z& ~" B, y7 J( W! l. `2 a; l
fprintf('\tk9 = %.11f\n',k(9))
# M9 u D2 [8 c# Y# N
fprintf('\tk10 = %.11f\n',k(10))
; S9 H1 R' w, d* A1 v: y! `
fprintf(' The sum of the squares is: %.1e\n\n',fval)
: f! C) [3 y9 w! o: O+ j* }
k_fm= k;
* {% k" F( U8 c$ d( T4 L- \
% warning off
* E. f5 v5 G, S, r
% 使用函数lsqnonlin()进行参数估计
4 [+ |& t$ m" e
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
# ^( h9 e5 |4 Z$ J/ u. k4 M+ z4 C7 I9 x
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
4 g4 X, m+ z p. a- i' v: { z5 e
ci = nlparci(k,residual,jacobian);
! D2 G1 r7 x% s8 T" t$ j$ [% C, ]
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
' w# I: Z' o8 I4 d0 |
fprintf('\tk1 = %.11f\n',k(1))
. R [4 g- L3 B
fprintf('\tk2 = %.11f\n',k(2))
" \ D# x6 R0 N. I
fprintf('\tk3 = %.11f\n',k(3))
5 c* R" S/ j! a1 R
fprintf('\tk4 = %.11f\n',k(4))
+ X2 U1 {7 D, b
fprintf('\tk5 = %.11f\n',k(5))
2 o m' F I" R; E" F) ^
fprintf('\tk6 = %.11f\n',k(6))
( O7 h) U1 R9 ]2 d- v
fprintf('\tk7 = %.11f\n',k(7))
u8 q% v) r2 j8 `# w8 x5 }, M# v
fprintf('\tk8 = %.11f\n',k(8))
: \- }. Z" i: v9 i: E' L" w, d, Q& `
fprintf('\tk9 = %.11f\n',k(9))
( R$ G0 B* ]( n5 K& a
fprintf('\tk10 = %.11f\n',k(10))
/ K' N0 j8 E3 f. e
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
6 M8 S2 s$ r/ x2 o; H
k_ls = k;
5 Z$ R ]2 r6 E
output
% V4 S$ `9 K1 X$ U% B, p
warning off
" a2 R/ n5 _- D7 R/ \) l3 o; L
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
: H- _8 {" y( T+ M
k0 = k_fm;
$ }5 q+ O& K6 H5 U
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
% h( b8 N. [1 G
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
, i- P9 `8 }7 p& N1 m3 ^
ci = nlparci(k,residual,jacobian);
$ ~ ` v0 z6 i. N2 q2 l, ^6 s
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
+ _; [: z1 y4 T1 X
fprintf('\tk1 = %.11f\n',k(1))
/ ~& \, ]7 f' n' L
fprintf('\tk2 = %.11f\n',k(2))
4 S- @$ [3 S: W5 z3 |, p' p
fprintf('\tk3 = %.11f\n',k(3))
0 u9 ]0 h' G j& y% ^; d
fprintf('\tk4 = %.11f\n',k(4))
3 M/ W9 Z& u1 L6 e$ F/ S0 z
fprintf('\tk5 = %.11f\n',k(5))
& I, E1 d: A, N" u, V8 m
fprintf('\tk6 = %.11f\n',k(6))
: ~- e" T0 s/ I& `8 G# b
fprintf('\tk7 = %.11f\n',k(7))
7 T% w- d* u+ m# z. a2 A! N$ F/ ?
fprintf('\tk8 = %.11f\n',k(8))
6 K; Q4 I7 ?$ ]: \5 S$ i
fprintf('\tk9 = %.11f\n',k(9))
8 P7 U: f, G+ V0 q8 a% C
fprintf('\tk10 = %.11f\n',k(10))
# u9 c/ V* ?% _4 u
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
2 r1 C7 P% M3 J* j5 x" r: Q: t9 P; o
k_fmls = k;
% v8 R$ t- a# p( C
output
+ T6 y. t7 X4 s, n6 S4 |
tspan = [0 15 30 45 60 90 120 180 240 300 360];
! S- z8 G+ U1 O8 l8 Y1 y* m
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
- Y& E$ b& X, X5 t* v |
figure;
; {7 f/ F, M, G9 \8 O+ Y2 C
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
7 c8 a' }# K5 M ]
figure;plot(t,x(:,2:5));
1 @" y9 \2 U5 @( \+ y7 u
p=x(:,1:5)
7 ^" y# v0 X% C8 x
hold on
2 x$ ~' n& ^$ F9 n
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
( ~! ^3 ~. h9 q4 O$ {: J6 }* _& Z
: [$ |; ^) \- k+ {
! J. d9 D7 o- u6 T' t/ z
% x4 _0 O: U& ]& y/ z4 h
function f = ObjFunc7LNL(k,x0,yexp)
4 A- l9 p/ w) U" I" t
tspan = [0 15 30 45 60 90 120 180 240 300 360];
* Y, O2 |$ \' n. d
[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
7 W! T" Z! J2 u/ q
y(:,2) = x(:,1);
6 W0 Z! Q; i5 ~$ g- a
y(:,3:6) = x(:,2:5);
+ I; p- S" I/ A
f1 = y(:,2) - yexp(:,2);
- K7 K4 `) B- B! y. W7 P" w4 t* F
f2 = y(:,3) - yexp(:,3);
5 p3 d- W' F5 K5 u4 k
f3 = y(:,4) - yexp(:,4);
2 C$ }2 T- v$ J3 H4 J' @
f4 = y(:,5) - yexp(:,5);
5 D% Z3 l0 v) u6 w& P1 M
f5 = y(:,6) - yexp(:,6);
. B7 C' }5 @. ~
f = [f1; f2; f3; f4; f5];
/ T' M/ k! x3 @# D: {
$ f$ P. k# d, M) A4 z9 A
9 J' M( I0 j8 `& l* ^" y2 _9 w3 ^
$ k' a# l3 }5 o! \
function f = ObjFunc7Fmincon(k,x0,yexp)
5 ]* f, w% g4 [+ C: @* E* k) h( j
tspan = [0 15 30 45 60 90 120 180 240 300 360];
. a; K" O; ?; y- u) `
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
1 w0 D+ ]: z. e) H* L7 j
y(:,2) = x(:,1);
6 U U) @; G( N- k
y(:,3:6) = x(:,2:5);
; ~3 s4 } d& _% [9 x0 a5 F
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
' P" T- A. U( i6 _. p8 |0 ?
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
- o7 P4 J9 g! h/ I5 i) e
+ sum((y(:,6)-yexp(:,6)).^2) ;
# A1 L0 f% b9 B* q
1 r. ~. o( k- a2 g
* L3 `& |6 e8 t
7 N2 e& m2 r- p$ P
7 f5 a9 J, J4 w, N7 w
function dxdt = KineticEqs(t,x,k)
- C: w1 @- ]( h- J5 N
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
. t- p( [7 x! ~% o! N2 [; ], f/ l2 ^" O
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
& q2 ~+ Q7 j1 X, `. X7 m
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
+ M5 w6 j& N* }& a% _6 ^/ L! v( u
dLadt = k(7)*x(5);
+ S v; V- J; X T3 O% r# \
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
e; f# r' X; z# v3 T6 u
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
/ M" q; [* p; b5 c) R' A6 Y9 x+ a
0 T E" V. w6 W) Y
9 {" o% W! t9 o
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5