数学建模社区-数学中国
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
[打印本页]
作者:
箫剑→残念
时间:
2016-10-25 16:53
标题:
帮忙做下统计显著性检验和K值的误差以及灵敏度分析
function parafit
# t1 _$ ~- L5 U4 c: }" W
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
B& L6 y L/ b6 i- ^+ R+ D# C3 v
% k6->k6 k7->k7
% A6 B2 ]1 u) {
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
- z3 L; a! J+ L$ x' I- ]6 }$ W( \( P
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
0 b8 H ]; b6 ]) ~: H$ l% ^9 e
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
* p6 D/ f+ M, m: J4 @/ q' F3 z
% dLadt = k(7)*C(Hmf);
% H6 y& B" N" ]
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
9 U2 J/ _ p) _" j1 S4 ?! @! q
clear all
; J3 E/ u/ G3 n$ o4 k) @6 J4 W/ G- i
clc
. L* n1 w# r3 m0 i
format long
) ~ C+ r" L! _- |
% t/min Glc Fru Fa La HMF/ mol/L
f4 y( e$ L! L3 Z# Q
Kinetics=[0 0.25 0 0 0 0
1 `1 [1 |4 V# M5 b
15 0.2319 0.01257 0.0048 0 2.50E-04
U; g) E1 H5 Y# n4 n s$ h3 b
30 0.19345 0.027 0.00868 0 7.00E-04
9 y8 R/ d4 U/ z' ?2 q
45 0.15105 0.06975 0.02473 0 0.0033
* K! Z# H0 S# ^4 R1 V' L
60 0.13763 0.07397 0.02615 0 0.00428
$ L8 X% d% V' z8 E; F9 W
90 0.08115 0.07877 0.07485 0 0.01405
2 w1 q0 S- p* ^$ N
120 0.0656 0.07397 0.07885 0.00573 0.02143
; h% d& i5 F' U$ I* N1 ?
180 0.04488 0.0682 0.07135 0.0091 0.03623
; O; S8 y1 R/ w" z! Z( ?: k6 }" L
240 0.03653 0.06488 0.08945 0.01828 0.05452
. j4 m: |6 F- e6 g5 h! f4 L
300 0.02738 0.05448 0.09098 0.0227 0.0597
7 |6 M5 Z2 Y! E8 {2 F9 q3 b9 q! J' v
360 0.01855 0.04125 0.09363 0.0239 0.06495];
8 H0 Q) f7 b/ ?
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
' s3 M0 a* k* z% x2 u# P4 E# t. z
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
3 m! L8 N O' j3 j& Q
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
% o, X9 n3 W+ M& c1 v1 q
x0 = [0.25 0 0 0 0];
4 C/ N) N9 N: ~- d5 i. [3 y6 Z
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
/ w/ o6 w" k6 F8 h8 u
% warning off
) F$ I3 c7 W) {5 Z# N7 T$ I
% 使用函数 ()进行参数估计
n L: Z3 y$ e
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
; O! n# X. a T* e3 `
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
5 l! I1 _9 S% Q6 |5 {2 ?
fprintf('\tk1 = %.11f\n',k(1))
, Q; g. N2 G. k+ \2 O2 F! h
fprintf('\tk2 = %.11f\n',k(2))
% q$ d/ [$ h7 {* p- O! k+ ~
fprintf('\tk3 = %.11f\n',k(3))
. ? {8 W0 P! e u2 f
fprintf('\tk4 = %.11f\n',k(4))
; j, G7 q. k' O; u+ ` j* w# g
fprintf('\tk5 = %.11f\n',k(5))
2 x- f% a* O/ G6 k. s$ g
fprintf('\tk6 = %.11f\n',k(6))
# C, U$ b! H! b6 o1 s# A4 \, _
fprintf('\tk7 = %.11f\n',k(7))
4 ?' o$ x$ g: E6 C1 e! K& S
fprintf('\tk8 = %.11f\n',k(8))
* b4 p& ?. n; f' u1 j Q ~
fprintf('\tk9 = %.11f\n',k(9))
# j. m# z8 c8 f6 i( x. l
fprintf('\tk10 = %.11f\n',k(10))
; r, Z$ r( u2 s8 K2 P
fprintf(' The sum of the squares is: %.1e\n\n',fval)
9 k- N7 _# M% X: t0 Q
k_fm= k;
. ^& G. O0 u. B: K
% warning off
# w! W: X; g5 {8 n2 I. C- O
% 使用函数lsqnonlin()进行参数估计
4 ]3 |% U0 r3 x7 n& ~, A& S B
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
# d4 I) a, R9 G# b& ?
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
" T6 F0 I7 G" G h U2 y2 I. T
ci = nlparci(k,residual,jacobian);
$ `; O7 U) m- E( M5 {& `" v" S/ D; W- F
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
0 a1 n1 `' M7 z L
fprintf('\tk1 = %.11f\n',k(1))
) H1 P* E8 W1 G1 o( c
fprintf('\tk2 = %.11f\n',k(2))
3 O- u" T1 k! u1 \
fprintf('\tk3 = %.11f\n',k(3))
( h, ?" v& o3 K) ?. B" i8 e" ]% W
fprintf('\tk4 = %.11f\n',k(4))
; E+ I7 k- ?; I G/ t% V) r/ j' b
fprintf('\tk5 = %.11f\n',k(5))
: N# ?8 e* W: ?: G: M( a
fprintf('\tk6 = %.11f\n',k(6))
: K$ v% g/ D1 N
fprintf('\tk7 = %.11f\n',k(7))
& O* P) N6 }3 n3 H7 r; C' O
fprintf('\tk8 = %.11f\n',k(8))
' j# g+ C2 X& Y. M. F& ^+ e
fprintf('\tk9 = %.11f\n',k(9))
/ X- i+ B1 O7 u2 _( P( o7 g) F3 m
fprintf('\tk10 = %.11f\n',k(10))
( K0 r' i3 w3 ?4 i6 s8 u( Y/ d
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 ^- m1 P8 n* t9 U% }, ~
k_ls = k;
/ h s: Q' Y: }' e
output
, a }; ^4 {: n) u" ^% P
warning off
7 x# [ j$ \4 u# J1 _, }! B/ y
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
/ m1 F- ?' p/ c, \2 }
k0 = k_fm;
7 g5 R" a1 [- Q; x7 |. i
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
, T- s( k k1 ^% U/ r
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
& Q5 q2 {% v4 z0 l2 P8 e7 U7 L
ci = nlparci(k,residual,jacobian);
6 q% \ k# j) V6 z- W3 j% F N0 E
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
1 \0 I; L0 Q$ T* E
fprintf('\tk1 = %.11f\n',k(1))
; v2 S. E$ y/ o: @- F
fprintf('\tk2 = %.11f\n',k(2))
1 T: p5 C$ O7 i: O
fprintf('\tk3 = %.11f\n',k(3))
- u% g } K% q& H5 I7 L, E% d
fprintf('\tk4 = %.11f\n',k(4))
( Q# _& W) y. x# o: E4 s" I: b/ y
fprintf('\tk5 = %.11f\n',k(5))
8 u1 P& _, y) F6 P4 M
fprintf('\tk6 = %.11f\n',k(6))
6 n/ \# n3 Q$ X& g$ F9 Y& O
fprintf('\tk7 = %.11f\n',k(7))
( j2 y* R: _. M9 p
fprintf('\tk8 = %.11f\n',k(8))
& k1 h, v( H4 F' T
fprintf('\tk9 = %.11f\n',k(9))
# |. |( s3 v7 M4 o. _9 M( o9 {5 v2 E& z
fprintf('\tk10 = %.11f\n',k(10))
9 ~, E2 v ~* a5 E3 y) B' `
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
2 R$ y1 L! H; y5 U
k_fmls = k;
M% V, f E$ x
output
! r E3 g) Z# E) O
tspan = [0 15 30 45 60 90 120 180 240 300 360];
+ B$ [0 G( C; I! Y6 ]6 o) z x* k
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
0 Q) I3 h: {0 E0 U
figure;
U+ Y8 K( m# |- A z9 v }
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
$ }- k, v6 j6 M
figure;plot(t,x(:,2:5));
1 ]5 \' o: z1 k. g A
p=x(:,1:5)
8 A8 n* v5 q- I! R _, n
hold on
* r& A6 O" s( X
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
/ s% L- ^( ~ H
) k' c/ W8 w4 k; a
3 d9 Q' M$ i1 L. Z6 L2 S: j
% N$ q! S0 }7 O9 i' }- p; p0 g
function f = ObjFunc7LNL(k,x0,yexp)
' M4 C( @: n3 w* U
tspan = [0 15 30 45 60 90 120 180 240 300 360];
d. F8 w$ q% `( _
[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
h& |2 |/ w c4 s7 R# v; B, M8 B
y(:,2) = x(:,1);
! l5 f# \ S% h) C
y(:,3:6) = x(:,2:5);
, Y1 h5 x% T, c* k) d1 M" G; V
f1 = y(:,2) - yexp(:,2);
$ f% x$ Z* e" ]! ~, |
f2 = y(:,3) - yexp(:,3);
8 a+ N: {' ^8 C- {* i% Q# l
f3 = y(:,4) - yexp(:,4);
2 B$ g' R$ Q, f9 k$ s4 ]. w4 \
f4 = y(:,5) - yexp(:,5);
; M# c$ h' H% D9 s% K% q1 c1 z: t1 Q
f5 = y(:,6) - yexp(:,6);
; f) |. }, l2 d6 g" w, ~
f = [f1; f2; f3; f4; f5];
. L* n, `6 L9 V2 ^; U9 c
1 k' J# s: N1 l, T) d' q
$ J1 S: M: ^% q' { ]2 H
6 C, U5 N6 X" e
function f = ObjFunc7Fmincon(k,x0,yexp)
& |3 [. B8 J( `2 Q" A! z) d
tspan = [0 15 30 45 60 90 120 180 240 300 360];
7 o* Y) w- k' m9 N1 R* S
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
: x/ ^1 a( v1 E# N. i" p
y(:,2) = x(:,1);
, G3 a2 ^6 `$ G7 I) k
y(:,3:6) = x(:,2:5);
* l9 L, k) r& l7 g6 F. H# D& `
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
' g6 D- G9 r' G+ \
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
; q- W8 C1 B+ a* T3 M2 K
+ sum((y(:,6)-yexp(:,6)).^2) ;
7 ]0 g, ]% Z* `' J4 e
( T* a- _. j( S$ i( I
9 F# A1 y# e! Z1 [
$ O8 y. ^1 F- W* \. y/ q
' ~# O. Q! U- J, ~
function dxdt = KineticEqs(t,x,k)
( [! ~* l; W( A) k! u+ i) I; V
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
" L( d- @% G+ N: ?0 l
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
3 m9 z1 i3 s( m
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
! D& K+ ^0 p+ A3 i
dLadt = k(7)*x(5);
2 V& D9 K, t& `3 D3 l7 Q% w
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
7 [& ?2 O3 o2 A
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
/ f2 t/ v% ^# S2 q( g( k' j0 q
% p, s5 J# S7 A2 |
+ ]5 W" ]1 z4 W: k
作者:
董事长之友
时间:
2017-2-16 13:48
蒙的一比 大哥
! W4 ]. u! ]4 ] ^) @- w# u L
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/)
Powered by Discuz! X2.5