数学建模社区-数学中国
标题: Goldbach’s Theorem [打印本页]
作者: 数学1+1 时间: 2020-4-25 09:46
标题: Goldbach’s Theorem
本帖最后由 数学1+1 于 2020-4-25 09:51 编辑
. \* w: c" Z9 T( C( {
1 N1 l( _) O4 `! ojavascript:;# Q& R; S8 [6 G# f( _
q8 Q+ _9 b+ ]8 T. Y
; \! W- ]( n8 ]% C% R7 ^9 \1 S4 @
-
QQ截图20200425100043.png
(223.75 KB, 下载次数: 589)
作者: 数学1+1 时间: 2020-4-25 09:53
References
3 i+ F4 r4 d! F2 L8 Q$ O[1] G. H. Hardy , E. M. Wright, An Introduction to the Theory of Numbers, People's Posts and Telecommunications Press, Beijing,2009,1-13.
5 G- S7 O2 u9 f* Y- Y5 Q[2] Hua Luogeng,An Introduction to the Theory of Numbers, Science Press, Beijing,1979.85-1126 ? P f4 K; z
[3] Hua Luogeng,Hua Luogeng's anthology | Number Theory Volume I| Science Press, Beijing,2010.199-217.- v0 h0 p9 v, k1 v4 }7 g9 z. S2 D
[4] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. Journ. Math. 6 (1962) 64-94.
8 v; Q* O+ L% ^4 m j5 F3 A+ W[5] Knang Jichang, Applied inequalities, Shandong science and Technology Press,Ji'nan,2010.- m4 r1 `0 `0 l. V- B
346-358.
+ ]. }3 |- f* T& y: R$ Y& u[6] Pan Chengdong, Chinese Annals of Mathematics,Series B, 1982,3(4):555-560.
5 i" c0 H9 X2 K T[7] Pan Chengdong, pan Chengbiao,Analytical number theory basis,Harbin Institute of Technology Press,Harbin,2012,196-375.
" d( ~" O# }- I7 g. Q) ] W) G$ o. |
作者: 数学1+1 时间: 2020-4-25 09:54
本帖最后由 数学1+1 于 2020-4-25 19:48 编辑
$ f& C3 c6 n9 v, @" C! ^
6 g6 {; k J2 w* r! }& y. G0 L; V2 S: bAbstract We Definition Collection of sums of prime numbers is a set all integers in,! W% ]+ q) I; D% ~# M" n% M
the form of p+p’ (for Prime number p,p’ Not less than 3),which is recorded as M (x),According . x' }4 }" |3 l3 N; J* A
to the prime number theorem with error termestimate the extreme value of M (x),
9 [7 o) o+ I$ G" luse the Newton-Leibniz formula to calculate the value difference of M (x), and 2 k0 d! ?/ H+ G
derive Goldbach Theorem.
1 l$ P# b5 @ l! p8 WKey words even numbers, Goldbach, Collection of sums of prime numbers , constant& E- R5 Y# }6 {: q: p
MR(2010) Subject Classification 11P32. j0 D& g% `4 A- k/ K' B7 m/ p
7 P. u) d/ M8 v
, ~* u3 h: p% d1 W5 Q0 E& `0 H* U. R
作者: 数学1+1 时间: 2020-4-25 10:08
' @% |) V1 n6 @, p: u
作者: 数学1+1 时间: 2020-4-26 08:50
本帖最后由 数学1+1 于 2020-4-26 08:59 编辑
x" C/ E* i, F, U/ k( W6 C7 Q) h# Y2 [9 F" T, H5 H
摘要:我们定义素数和的集合是所有整数的集合,p + p’(素数p,p’不小于3)的形式,记录为M(x),根据带有误差的素数定理估计M(x)的极值,使用Newton-Leibniz公式计算M(x)的值差,然后推导哥德巴赫定理。
. S& \2 V. q# ?+ `0 D 关键词:偶数,哥德巴赫,素数和集合,常数
4 X" d1 k9 v* @4 u$ p. c MR(2010)主题分类11P32/ E4 m, \, R. l5 v, ^
. v9 v5 o1 Q! p8 E6 u* {8 e
; f0 _$ Q/ A6 P/ d' R& e2 N
! O" }; f& |% D( ^% H, g0 v% e
" L( o& S+ H6 Q) s3 R+ u; G Y& h* I
: j! }7 b6 x7 q5 o+ G
/ \: P9 C' g7 P- T4 o+ V3 E1 v2 } F0 D3 @/ h) O* _
& `3 q" b% t; N* \1 i! }) Y! S
9 j! B" x" C& h1 Y, v- o
; ^5 P: R& t5 r5 }# [# k! |3 K d* u2 t3 R; t( @
+ S/ O9 x0 g ~% l- \( a0 ^( \
' N2 z6 k+ g! v9 K, x7 N& k/ b4 m2 f* e1 F8 j- s- D
0 D/ X1 f) |5 ~% B5 O
( O' s& o \, X
, q0 H" o% K7 J- l% ^, S3 q: n) b) q. A( k
) N( z1 ]1 Q" Q4 O% \- A" W+ A! t. `2 m$ @
0 M) C! B: z5 c" ]8 ~8 e' O) X
5 p, m5 ?5 M4 b$ G
/ g" b- t- y8 i5 m% X4 D: S; W( E8 n6 f
9 F% \ P* p) s9 q5 G: T- M& t8 q! Y5 G% U- |4 n3 W
! W1 _9 r( @" c4 L5 M ~+ T' i( w2 l: k( }
6 T6 u O' f8 K/ Z9 y0 _/ D9 |! T
' D2 o8 f. x3 P7 b( Z X- M# x" D0 |+ t
, Y& l2 m% P3 x1 L! I% M
+ s' B3 H/ W2 l* O/ ?1 f3 v+ Q! [+ g8 u9 r- Z0 l! B
3 G: }; h, h% l+ H
0 T( h, b) b9 o" g
: I& J+ r2 a9 e0 t8 x9 ~
! |! k3 G. v: ]" x
2 A" h; t; s" S4 i* p s: |
/ e( H9 N1 I! @
& J- ?3 O) Q" H: M% o% Q# l: b8 a: Q
: j5 _* W& y( h8 g1 H
# M- r3 U" Q( I" X' k
2 t V0 }+ o- u, \/ k7 D3 f7 T: `; p/ g# w/ g# }
+ x9 g. h* r/ g8 S: y$ H
( o* c7 W; u4 o) z* I X- } \9 \. J
+ q. s$ l( {- x
9 N' i7 ?0 c0 N, W5 V% z# b E, o
4 o% [8 f: u; A0 t1 ]! H2 ^* E9 \
" c, p) Z+ o. u4 O% B
0 m/ _0 r5 q# w7 J* t' Q( J7 W% G- ` }( N
2 w; ^, c: n8 Q- o2 W! r. g3 [
' v3 p; }% n z4 f- |" j
9 T; u7 ?& b- m( V/ [
! d! z4 c7 z* q3 M- I0 s" Z
. ?( Z$ a: T( D! F8 n, J" a8 n* E) i+ s" c' q
( C3 v" s, t h$ R E
6 E0 g) k A) a
; [: N( E: L( G4 V4 t5 A! c
. h4 S9 q, r: v( m8 B- b a, p2 G9 M" E4 F
) D) u. ]! ~2 n l- S; p
l) m* F1 T8 V8 I+ V' ?; \% `4 z: h1 @# g" G2 l) S& J
/ l- A Q* ^$ d& \$ p, g" v7 J. V% g- z e! K
8 k: _3 `* R' p. V
4 b1 n) y; z6 ^% b" I- H" M6 c l; ^$ V- F% f; N
9 ]- Y1 r3 H7 y8 P% `0 ^% ~$ H5 K& \1 H
, ?1 a- y% E7 i* {, G
& e! Q! ~1 |. \: `7 k0 `
& d$ Z. G$ S& v8 s) x1 P4 c
7 f: ?* u: @2 a( P$ o0 \# k% ? c2 S0 @3 D% w
& x- u$ ?2 ]. t B0 L2 j7 y* C
2 [0 i' V6 Z( S; s( ~
7 A- N$ T$ e2 ~* b* d3 b# F2 G" t6 [* a5 M
- }: x2 }6 p) w5 x" F
# d9 J& @& ]1 o1 Q' y2 t) |
1 I6 n) b% v& \/ S) [3 }. E
' c* B9 G4 T. M2 V2 G$ t1 J3 C! X
. ?/ ~: }% e; f4 \. _" t( a. {! ]' O2 L4 h# B
* z6 d6 h. w2 h/ Y8 X5 n3 d* @5 c
. M4 F. j# g8 G3 g+ d
8 m( Q9 ]/ ~4 D8 w6 K* [* v8 G* B7 m$ f7 H
% ^1 s* k' p& B0 i( J3 W% [0 e" l* V
9 m! ^) x6 w6 Y! ~. P" T
) G$ `. Y+ b* R
8 n# N( y% M o; V# h
- n: \5 B6 U! F0 [: I5 ^( S+ q5 v$ b: c
}+ b/ Y# o* y
/ }, y2 s) N7 w3 j( c1 P0 _
# [8 @, {. }- K8 _ W
7 l4 J6 G0 G. C9 M
& X. X+ ^) I6 w# r
5 i; c% l$ j7 a. g
/ t; G9 y0 Y8 P' l! h: d" W
; ?: P- V7 _0 t- k4 x6 C6 q
4 U: N$ Y9 {3 |/ o% s
0 p f8 _" J- Q' S
0 T6 I1 X+ f) H5 F" J" u, A6 ?% A l5 t
9 l5 `7 p# [9 q6 M% ?
+ B6 d* w& l( Y$ j9 W/ E" m# H. @% W- V6 B9 t4 X8 _
0 K. s2 U( R$ v7 `
; G0 o) x/ A' I( P, @
" `) F+ H( `# C$ M6 A7 l
; w5 K, B: y8 o: V
3 @1 a$ v3 q/ J8 f# p) C# i1 v' {, w. Z5 E" ?; w
( ^4 X* v( F T$ b0 H* c7 _
/ W6 z. H1 u2 k' T) x& I+ ~
" ~, d; y( _8 C, l5 B6 C6 J' h, S: i8 e7 j/ O
: q% n( [5 Z0 P
8 `4 K/ X1 D; }' o. ^# B
( @ ?; c% W4 | L; R2 v& k. M" Y1 m- l
$ B+ w3 @8 a+ ^6 R
- M. n0 q( _( l. {
8 o9 z- j% E2 x2 B, ~; O/ w0 ~& d) b- q4 Z' i8 G" _. }* C% `
$ ]( ?, k6 I" Z+ { y0 B F+ {% e3 p
$ {: C# p% s/ z6 s) }7 X7 N. i! V z
* b% S" E2 _' b2 a* j a# P! K
" r1 `" k& S; t- m! q4 s8 f: [% b; d) u% q; X2 m+ L
7 T: J1 {1 F3 z; d2 N$ T
% K- D9 R9 R7 N& f( F3 b5 |# b4 ]5 r' ~* c
! w, U9 B5 O* }8 z' H( @' S/ h4 ]6 N u% G# a
; J. ^& R0 _. _
# D2 N6 S/ r \0 b, S3 L( D* N/ ~# L
) y2 g( x' q7 V1 ~- j( r
6 g: F, Y0 W1 [4 A- u2 O7 F
2 W. y3 q, e3 b0 h0 n- G
9 i3 Z J- R+ i* }
0 R p" I. i& B8 n( ?$ G
# c# `" ^5 W7 Y( e# [ r/ ~2 F- Y+ x2 ]
" t. a, b4 Q+ X) x' r! w
4 F0 S7 ?) J/ G- E+ @ ~! u, b/ U. @7 g$ g
) F E$ p2 L2 \' R6 R0 m# p
5 t+ E1 ?" x! W9 J9 h5 C# k9 w
. S' a% y' y& t9 r) J
# R3 P0 c) \! e
6 ]* V' M& W2 Y8 _$ ^- K
1 C# l, G+ ~8 J0 U$ f4 Y
5 O8 n2 y, V; D/ g
1 H, _+ i5 z8 Y* k+ a2 `+ g# h& U S8 n7 w, | F
5 ` o& J: ~7 r
1 h8 y1 ?: S: x) s' U7 w5 v+ e, |4 f" w! P5 X, P
4 O3 i/ k n2 D+ A3 g
( W% i# r9 f/ W& W& {
9 _3 @2 z" R, {" D' _
2 T# p% x' [$ I/ T, L! @- P; }8 r2 y2 X, U9 B
+ s7 \, K4 L4 Q/ t
7 W! }& s3 k$ A% [0 a) r% p0 [
. j6 N1 q$ z4 ]3 n c$ E- V
1 O: R! k1 U2 s7 X( N
$ g; r1 S3 f3 ]6 D3 v+ \% ^$ H5 m; ~% o; ~. ^) v
" d8 N( T# f& ^7 \
8 F. y) C0 |; P+ D- k: N4 D1 q' F
% l/ }( P! j' X& m% h" p* \2 T. R) h8 k# F
& Y. g- `; h, i1 Z. l! r% O1 z0 q2 C, r% @9 Y8 `% ]9 o
$ g+ V) N+ j' w
# K0 L% C! L6 G1 [
t* a: G9 a5 f7 \( n
8 |$ @: s8 k& x& B7 B, O0 _7 ?+ ~' J6 [ h% C
6 G+ w8 [# F- n- p, K! w7 l. B. u( ~
7 H+ _: u1 L( M1 T& g& y4 v$ [( d( M* i4 g- f0 W; ~) a0 F
4 h8 ]1 T/ t, M8 I5 s% |4 L: k7 k \
- A4 X. @% i! G9 q) J: f
( U; T- j3 {1 i' Q3 Q5 c
4 F1 E0 T$ ^! I9 V
% ~* P3 n- ^; O2 r7 G6 H! p% |
' ^5 X1 o4 B" s2 o- E& X# x3 m( `& j9 c7 w
5 y z- [9 D. h, @8 W6 o& {2 v! @1 B, v8 J k1 b3 n7 d: j$ O- I
$ Z' g; d) v6 k
m. P: a, Z3 ]( Q7 G
9 e. `/ C4 k6 w# K$ \* m: O4 K& _: H1 E
9 c, R' E; j* X2 r
- j. I' W* L5 b' ? c; A0 T. W
# }8 W4 [8 |5 C2 ]* T
3 m& j `& B1 H& C" h% n; m# ? l5 s, R9 k
% L# ]& x/ X6 f) J! P8 k6 }
D1 y1 U I' u- T; I! p5 b% B, m! O9 C. b, W" s& ^( }
* x. y @3 r+ F! \6 f
; Z9 D* J- ?% h3 K
! n C. Y5 P! [
1 {8 j: |' }) q* p5 W& X: A9 t1 R; U6 @
8 M5 o$ I, i* I6 w1 t5 u2 b/ x; ?# u: Q. O. H, y, a5 Q% W, ?
- u2 k" W+ l4 H2 l ~1 y- y( ^
; ]0 c$ n& z9 [$ y) _/ C8 `
! f$ V8 S* l# ~0 W X9 }, L6 T: t$ I
/ P# t6 ~4 d. o6 x; G! c0 k
$ c# I* T6 J4 {6 n
' P7 O" L/ D/ J* ^: E
: b% L* z8 A1 H( ?' M; k
) k2 ~1 G# C8 t
4 [6 P. o8 g9 J
; d M$ a0 q$ J7 v# Z8 C/ c
" Z4 a) a2 ~# Y( |8 @) ^' m
/ |5 e# r' j9 ?9 Q0 D$ e" J- L
9 w! O+ z1 Y2 L, ^: v
1 e4 ~7 A {) W8 Q2 P1 D4 _
6 u. N: u2 S9 p D8 {3 a
0 S+ O* f) A5 O/ v" O
& K% d3 s5 [/ ]
1 g; a# K/ O3 b0 D' F( F& Q7 d& m
; H* ~: }6 E1 W! ]
$ d } T. Q+ B4 V
7 ?$ G' O% H: ]$ n( W! c6 w Q" i: o3 Y' S' G0 V- k3 d
: C7 U5 X- Q9 D: v% s8 S& J
5 Z/ ?! r, L) P+ b2 J& S1 n2 |; A6 N& @5 T1 Q
6 Q+ i0 }' p3 X& ^
% M5 K X$ V1 J% J" ^, k1 L' \# m
/ m- g: x% n/ J" ^, O+ c! w
0 x. m/ u) j3 w
' x1 K( e$ Z. S7 o0 M* {$ l0 T
- a/ a. O" z M0 h! [0 ~6 A
9 ]% Q( z* M7 q/ Y' D$ ~
. ^' T5 Q, U% H# Q
) l, J! [: L$ {" a) h" n. k& s) a
7 O Z3 [# F! u
0 L+ k) w: X# p1 Y- i
) O9 o2 X! |$ s
$ W$ f h- Y" @7 R1 T' p' s& {) a$ q
& Y' i- w* _! Q* W/ o' k
作者: 数学1+1 时间: 2020-6-25 13:09
本帖最后由 数学1+1 于 2020-6-25 13:37 编辑 ' b0 Z8 F1 X" @
7 ~- v& P: q, m% D1 k
1 n5 {& d2 l0 W5 T7 S) ]- y4 C/ W0 q7 V5 P
作者: 数学1+1 时间: 2020-11-9 10:57
I havesubmitted a new manuscript titled "Goldbach Theorem" forconsideration by Annals of Mathematics.
! N3 l2 m1 ~( m) D6 x- s7 Q9 g- E
5 B5 C& X$ b' ^( h
3 |4 g: \" j9 s
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) |
Powered by Discuz! X2.5 |