数学建模社区-数学中国
标题: 数学建模中的传染病模型及其编程求解 [打印本页]
作者: 杨利霞 时间: 2020-5-14 21:55
标题: 数学建模中的传染病模型及其编程求解
数学建模中的传染病模型及其编程求解
文章目录
问题的提出
指数模型
SI模型
问题的提出
医生们发现,在一个民族或地区,当某种传染病流传时,波及到的总人数大体上保持为一个常数。即既非所有人都会得病也非毫无规律,两次流行(同种疾病)的波及人数不会相差太大。如何解释这一现象呢?试用建模方法来加以证明。
指数模型
定义已感染人数为i(t) i(t)i(t),假设每个病人单位时间有效接触(足以使人致病)的人数为λ \lambdaλ,那么,在时间段Δt \Delta tΔt内,病人的增量可以用如下的公式进行计算
i(t+Δt)−i(t)=λi(t)Δt i(t+\Deltat) - i(t) = \lambda i(t)\Delta t
i(t+Δt)−i(t)=λi(t)Δt
将i(t) i(t)i(t)移到等式的右边,我们得到如下的递推公式
i(t+Δt)=i(t)+λi(t)Δt i(t+\Deltat) = i(t) + \lambda i(t)\Delta t
i(t+Δt)=i(t)+λi(t)Δt
以上递推公式意味着,我们可以通过当前时刻的病人人数和致病参数λ \lambdaλ,计算得到Δt \Delta tΔt时间后的病人人数,将以上思想在Python中进行实现,代码如下。
import matplotlib.pyplot as plt
%matplotlib inline
deltaT = 0.01
lamb = 2
i_list = []
i0 = 0.08; # 初始有8%的人患病
i_list.append(i0)
Tot_Time = 10
TotStep = int(Tot_Time/deltaT)
##
for i in range(TotStep):
i_new = i_list[-1] + lamb * i_list[-1] * deltaT
i_list.append(i_new)
plt.plot(i_list)
将以上代码在Jupyter Notebook中运行,得到病人人数的变化趋势见下图,从中我们可以看到病人的增长是指数级的,在短短十天后,已经有3000万人患病!这显然不符合实际情况的,那么问题出在哪里了呢?
file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif
实际上,若病人解除的是病人,并不能够使病人再次患病,实际上以上的算法导致了重复计数现象的发生。解决办法:必须区分已感染者和未感染者。
SI模型
现在我们将人群分成两个群体:已感染者(病人,Infected)和未感染者(健康者,Suspect),该模型称为SI模型,模型假设:
在研究时间内,不考虑死亡率和出生率,即总人数N NN不变,病人和健康人的比例分别为i(t) i(t)i(t)和s(t) s(t)s(t)
每个病人在单位时间内有效接触并致病的人数为λ \lambdaλ,且只有接触健康人才会致病,称λ \lambdaλ为日接触率
仿照指数模型里面的建模方法,在时间段Δt \Delta tΔt内,病人的增量可以用如下的公式进行计算
N[i(t+Δt)−i(t)]=[λs(t)]Ni(t)ΔtN[i(t+\Delta t)-i(t)]=[\lambda s(t)] N i(t) \Delta t
N[i(t+Δt)−i(t)]=[λs(t)]Ni(t)Δt
消去N NN,再将i(t) i(t)i(t)移到等式的右边,我们得到如下的递推公式
i(t+Δt)=i(t)+λi(t)s(t)Δt i(t+\Deltat) = i(t) + \lambda i(t)s(t)\Delta t
i(t+Δt)=i(t)+λi(t)s(t)Δt
同样地,我们可以通过当前时刻的病人人数和致病参数λ \lambdaλ,计算得到Δt \Delta tΔt时间后的病人人数,将以上思想在Python中进行实现,代码如下:
import matplotlib.pyplot as plt
%matplotlib inline
deltaT = 0.01
lamb = 2
i_list = []
s_list = []
i0 = 0.08; # 初始有8%的人患病
i_list.append(i0)
s_list.append(1 - i0)
Tot_Time =5
TotStep = int(Tot_Time/deltaT)
##
for i in range(TotStep):
i_new = i_list[-1] + lamb * i_list[-1] * deltaT * s_list[-1]
i_list.append(i_new)
s_list.append(1- i_new)
Time = [i * deltaT for i in range(TotStep +1)]
plt.plot(Time,i_list)
plt.plot(Time,s_list)
plt.title("SI",fontsize = 20)
plt.xlabel("Time")
plt.ylabel('i(t)')
file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif
从SI模型我们可以看到,病人比例不再会出现"指数爆炸"的情况,在t→∞ t \rightarrow \inftyt→∞时最大患病比例为1。在SI模型中,病人数量的增长曲线是一个典型的S型曲线,又称为Logistic曲线,该曲线在生物学上经常被用来描述物种的增长模。
然后,SI模型的结论告诉我们,无论λ \lambdaλ多么小,最终人群都会患病,这显然也是不符合实际情况的。
————————————————
版权声明:本文为CSDN博主「任公子ha」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/baidu_26746963/article/details/93918383
1 @+ ^0 f4 F$ p" z1 I
: u$ y( c: f) Z
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) |
Powered by Discuz! X2.5 |