数学建模社区-数学中国

标题: 【论文】基于机器学习算法的巨灾债券风险息差定价 [打印本页]

作者: qq_1537237806    时间: 2020-12-20 09:41
标题: 【论文】基于机器学习算法的巨灾债券风险息差定价
巨灾债券风险息差的实证研究目前已经相对成熟,但具体模型形式和变量选择依然存在一定的争议.将采用地震巨灾债券发行数据,建立巨灾债券的风险息差定价模型,分析风险息差的主要影响因素.首先,构建广义线性模型,发现本文提出的Logit风险附加值效果优异.然后,将广义线性模型的估计结果嵌入深度神经网络,提高广义线性模型的预测能力,同时提高神经网络的迭代效率.最后,比较了深度神经网络、嵌入广义线性模型的深度神经网络、随机森林、XGBoost以及支持向量回归等机器学习算法的定价效果,结果表明支持向量回归对巨灾债券风险息差的预测效果最佳.实证结果表明基于机器学习算法的巨灾债券定价模型明显优于传统回归模型,建议采用支持向量回归算法对巨灾债券风险息差进行定价. $ K4 r) a% x' Y' U9 }/ [
$ y' K* x* X6 r+ B
( `. i1 v' }# a& l

基于机器学习算法的巨灾债券风险息差定价_陈惠民.pdf

1.55 MB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 1 点体力  [记录]  [购买]






欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5