4 b5 d$ V1 L* k( T) } / S" ~7 | J, _, _: v8 q– 方差:D ( X ) = k 2 − k 1 2 D(X) = k_{2}-k_{1}^2D(X)=k 1 I0 H) @- R- b7 D
2 5 b: D( P3 c/ q6 L3 L) g * U- U' _9 ~! c* d3 z
−k 5 @- I% b9 O: R. ~0 h9 C2 q( E8 Z& i1, y& F& H8 P/ l, [7 ]2 P/ S0 x& Z" U
2# u0 q% W; C; ~; Q3 X4 ]$ g/ C
1 q( n) X0 w; |6 u K3 d 4 v1 ?1 y5 V+ X7 X
7 K, w v- B" _1 k3 U* ~& v( ?1 {( r' { ?; a
– 特征函数:φ ( t ) = E ( e i t X ) \varphi(t) = E(e^{itX})φ(t)=E(e 1 c% D3 k9 L& I: Y; k% h
itX ! Z2 L* t( t, p& d, U p" n w) ^6 g ) 2 e3 o: N, w# j7 `# ]& g/ ~) ^1 y- O/ d$ u! e: e" W
3 A) t% r% D. J/ F- A– 矩母函数:M ( t ) = E ( e t X ) M(t) = E(e^{tX})M(t)=E(e ! F. ?6 l/ r3 btX 6 h& E2 k, [: l9 R/ K )* L( J) e7 N) F8 f. Q0 i q5 a) C1 f
: o+ i; q; f/ j4 X! {' H" Q3 W6 L2 g9 [
– 中心矩的关系:E ( X k ) = i − k φ ( k ) ( 0 ) = M ( k ) ( 0 ) E(X^k) = i^{-k}\varphi^{(k)}(0) = M^{(k)}(0)E(X 3 X" v4 f c2 l" a6 c2 c
k , @& l- i- j) k" f9 i )=i ! D1 k& l; {. i. r0 R+ Z }0 k" [6 T/ n& k
−k " I6 U" e6 B! d) i φ 9 L" G* { M# n! n; k: X4 h(k) % w0 J1 W9 k! G+ v (0)=M . j& S- p* Q& k' O0 l, P+ l
(k)% d3 l+ r+ o) v* W" l* S
(0)+ b) J) |7 U/ h4 }4 n! O: ^
& p! S( Q& M5 J . G& [& s+ S! b7 C+ f1 N6 b$ N* B– 偏度:S k e w ( X ) = k 3 k 2 3 / 2 Skew(X) = \frac{k_{3}}{k_{2}^{3/2}}Skew(X)= 6 F8 S" c( d- G% l; Hk 1 u w! X' v) }* A9 `* R2 ! p$ c8 M. M* S! p+ @3/2 ( X. p0 l& b& j5 T 1 a0 [& m, s$ c# H0 C6 B1 d" s . `3 R( X& B& o" S/ \
k ' D! M6 E3 [, h4 [
3 $ b9 D6 W7 i# ~6 z2 Z: p6 { $ u* t8 v. v$ P. {5 K5 S2 |9 O3 H. j
; v( ?+ h4 `; E: s5 L1 f5 B" Z! j+ q 4 X! M Z0 d0 Z- M2 E& w/ x 3' n: g" ^" K$ b) f* p
- w$ m' j" v. K6 O1 t' i# b4 m) L; _9 S. z( T2 P
– 峰度:k u r t ( X ) = k 4 k 2 2 kurt(X) = \frac{k_{4}}{k_{2}^{2}}kurt(X)= 3 y9 o& ~6 T) E% m3 Qk : ` [4 X- Q! ~6 b
2/ C! m2 ~# ? T9 X- S! k) O) ~
2& c6 |! X( p# e
! t9 g& l1 J% E5 _- C7 Z; Q , F2 J2 ]. l0 k
k % ]7 d! i1 V1 t* R8 H3 [
4 ( M9 X# O, E. r, d2 X9 m % V* c8 q) @+ w8 \4 h3 w- C8 N" A & |" z2 R' K+ T
7 ?0 t1 i- b6 u0 g ]0 U5 c8 z 4 0 M+ @% L$ }2 U n |; @9 y% A; D5 n. q
' c! T% Z2 j% M. j6 y& F5 d1、几何分布4 a2 R+ M: l5 A# F5 W
– 密度函数:f ( x ) = ( 1 − p ) ( x − 1 ) p , f(x) = (1-p)^{(x-1)}p,f(x)=(1−p) # p. I; h" m* z2 R
(x−1)7 ^+ q& S+ @% u
p, x = 1 , 2 , 3 , . . . . . . x = 1,2,3, ... ...x=1,2,3,......2 u+ Y+ W$ {$ d' A
4 A$ G( @/ x4 f9 h" y
0 n* V' _- L* s9 U4 s2 z" ~$ j
– 分布函数:F ( x ) = ∑ k = 1 x f ( k ) = 1 − ( 1 − p ) x F(x) = \sum_{k=1}^x f(k) = 1 - (1-p)^xF(x)=∑ 5 _0 a1 v/ h0 x @7 Z, G i' Z* _k=1 * j" x7 B" u& U6 r2 fx7 G- i4 g- J0 f. {0 G {' o
8 b, ?% c$ a8 H, w4 V" B f(k)=1−(1−p) / R. }' i" o# x; Tx9 i* O$ F5 [8 x
% X2 p- D$ B) C/ _- F( ^, L5 n# U5 r0 ?
" }, s' g) c% I– 期望:E ( X ) = ∑ k = 1 x k f ( k ) = 1 p E(X) = \sum_{k=1}^x kf(k) = \frac{1}{p}E(X)=∑ % g3 ~7 ~% e, Q$ F+ e! `, a6 w! nk=1) n% q, L$ i0 a
x/ ~8 t# d- O/ x3 X2 [5 d
2 Y! `, @0 l; v5 Y e; z8 P4 ^
kf(k)= / m4 m i9 ?, z" |% Up) S3 q8 i8 ~) X' P
1 * a6 Z. |1 J9 w1 { + N3 l! l2 \7 y
; l0 w9 W7 c0 \5 j' ]7 ?* F. o
- Y, w( C- t4 y3 J# `" K
– 方差:D ( X ) = ∑ k = 1 x k 2 f ( k ) − E ( X ) 2 = 1 − p p 2 D(X) = \sum_{k=1}^x k^2f(k) -E(X)^2= \frac{1-p}{p^2}D(X)=∑ 3 [' i6 k$ ?- c
k=1 ' V5 ]0 Q1 z/ l. c% F0 H. m3 u) wx - g! I# i* N. z/ S* b1 t2 F5 e " v/ T& N0 k# [. k- }5 h
k 6 F) V$ m2 N) i$ K( S0 j
2. q: | |% V2 V) s: c3 q+ }4 I4 F [0 M
f(k)−E(X) ; v* ~7 _' c8 T I
2 . B# N+ ^% g! [* M = 5 P0 Z* e2 A+ k* H
p % W! p1 W) a0 ?, \, b
2) ^: x6 V0 P; q3 w! M: W
8 \$ E2 g6 P& c# d
1−p: b5 Z( p b# ?/ o. l. s9 |
0 T# n+ p, U* c& P* ^/ s2 p) c0 M. c2 _
+ p9 O, y8 x& Q/ i/ e2 P( b : z6 N" o; O; z; C9 t6 R f/ {' b& t6 p. p. D– 矩母函数:M ( t ) = p e i t 1 − ( 1 − p ) e i t M(t) = \frac{pe^{it}}{1-(1-p)e^{it}}M(t)= 5 `1 n9 N. O- Y3 u; q. p6 c( S1−(1−p)e 1 g4 Y9 u1 E" d& ]7 j
it , u+ [0 R$ ~+ l, H ~- k$ e- P" m5 l0 ype 2 }$ P" }. O3 a; \5 F3 P/ Lit7 `( y1 l8 P" y/ y: A