数学建模社区-数学中国

标题: 书籍资源:单目标、多目标与整数规划 清华大学出版社 [打印本页]

作者: 普大帝    时间: 2022-8-19 16:51
标题: 书籍资源:单目标、多目标与整数规划 清华大学出版社
你好!我是陪你一起进阶人生的普大帝!愿你成才!祝你成长!. i( ]4 w4 `% R; j  v
清华大学出版社  卢开澄 编著,以下为目录内容
' G5 C+ v/ a2 O( H0 U* O8 ]7 u
目 录
2 d3 ]5 b; p1 f( l( x第 1 章 引论 , A5 e% G+ S" @, H+ a2 k' X7 r: K$ v- `
1.1 引言/ k; H; C( D, ]2 m8 v0 }% @" ^
1.2 问题的提出0 E( q" w( t( h2 C$ N% z- v
1.3 标准形式与矩阵表示法 0 O' K+ ?' O( {/ P5 v: h3 B
1.4 几何解释 + C8 Y+ @7 v. U, q* R6 L5 o
习题一 11
2 e# c; l! j+ a6 T' |第 2 章 单纯形法 5 B8 t! F/ [+ a4 T7 {( E  Y- G3 K
2.1 & 凸集 0 O2 L! ~' G9 Z* ]$ @# g+ A: X% q; j
2.1.1 凸集概念
6 C* Z3 A3 V. z* C2.1.2 可行解域与极方向概念 . M1 q6 y  e' k0 g1 N
2.2 凸多面体
& q* p  N; y1 z5 N" G2.3 & 松弛变量 ) R% \% x+ x9 |7 b8 I# m% {
2.3.1 松弛变量概念 ) V: [; j0 q. k* B
2.3.2 松弛变量的几何意义
9 a. _# H7 U* B$ d' b' @2.4 & 单纯形法的理论基础
' t0 V+ j3 @9 n* L$ K2 S. z2.4.1 极值点的特性
$ e4 {7 ?1 i( y+ I% G( r2.4.2 矩阵求逆
) p5 o! e2 b' a# u) e7 f9 b1 |+ s' J8 G/ [2.4.3 可行解域无界的情况
. j9 `) g3 `9 j+ Z2.4.4 退化型举例
/ x8 T$ x, `* c( A9 [8 J2.5 & 单纯形法基础
8 b5 z8 @$ w5 m- Q# i2.5.1 基本公式 8 \; E; ?, R' x/ n
2.5.2 退出基的确定与进入基的选择
: }; J2 u1 m* b" a2.5.3 例
' Y' L1 @( n% M8 U; k6 Q, }/ p2.6 & 单纯形法( 续)
9 k4 e' N, ?2 F6 G) w2.6.1 基本定理 7 C8 X, `4 A& |, j
2.6.2 退化型概念 ' l3 S2 X. k2 Z7 ?9 w$ S8 P
2.6.3 单纯形法步骤 : j, h$ B8 V' o& |' F% c: r( \
2.6.4 举例
9 d$ [1 O5 c+ X* r2.7 单纯形表格+ L- f; ^# N  p+ I1 M" m5 ]5 `
习题二 48 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯- q  o$ Z* K$ V  v- Q& A) G
第 3 章 改善的单纯形法 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) R) n" D2 N  a! F9 O8 o/ ^7 p/ [7 j4 W
3.1 & 数学准备 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 W# H4 B( z7 k/ [# m
$ x: [% e6 `% t' y- _% y7 [3.1.1 改善之一⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. X. b9 m7 o8 B" u1 Z3 S
3.1.2 改善之二: 矩阵求逆 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯  H7 x4 X& T; R. N8 [5 E
3.2 & 改善的单纯形法 52 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 Y7 `& A) R  j3 y( G* D3.2.1 改善单纯形法步骤 52 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 Z  ?$ q! j$ a3 g' \# Z2 Z' Q
3.2.2 举例 53 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 E0 z4 f" f# P$ p
3.3 & 改善的单纯形法表格及其分析 58 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ S. s$ ~5 j5 Q3.3.1 改善的单纯形法表格 58 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
: Z) g7 Z( k  G! p) T0 i* h3.3.2 改善单纯形法的复杂性分析 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, e4 K  v: ~& n- ]  ~# q3 T
3.4 & 变量有上下界约束的问题 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  U! r) b' h& ^, v% A3.4.1 下界不为零的情况 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  u0 K! ?, A7 \5 Z$ m  q9 B) _2 p# o& f9 t7 p3.4.2 有上界的情况 63 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 e5 C. U; z: G& z5 A
3.5 & 分解原理 68 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 Y9 L. P+ b. P- m9 U0 ~! E3.5.1 问题的提出 68 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' P9 h( X! `6 r( F" u! p2 t
3.5.2 分解算法 69 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# b4 A/ A8 o. f$ C, z
3.5.3 说明举例 71 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 W' f" C+ M% K" y  s) L
3.6 & 无界域问题的分解算法 80 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯% j2 B' \3 o) c3 H7 k2 l: C; J
3.6.1 分解原理 80 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 g$ M! B6 _- M" M
3.6.2 说明举例 81 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
: Y! ~7 T% X6 n5 E7 `0 _8 }" g1 p. |习题三 86 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 {2 o# _+ d" E# ~8 c第 4 章 单纯形法的若干补充与灵敏度分析 89 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 J9 c- e8 G( ?4 e  h6 R
4.1 二阶段法 89 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% H& T: n, c/ i  H' p( C4.2 大 M 法 98 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
. ~; h7 o; H0 a0 _: x) R4 r$ l9 b- Q0 E4.3 & 退化情形 103 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 J+ B" Y% S/ X! T
4.3.1 退化形问题 103 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ y& C& U7 Q% N; c7 m9 M, P4.3.2 出现循环举例 104 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯- m, ]0 d6 x' s: [; ^. {
4.4 & 防止循环 106 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) X) C0 O3 ^4 d# r3 D4.4.1 退出基不唯一时的选择办法 106 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 q) \2 |( }) p% F
4.4.2 首正向量概念 107 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 K  F- {5 r0 ~' e) o" G8 N% h
4.4.3 不出现循环的证明 108 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 c7 V. q! ?( Q$ G; O; {- o* y8 t
4.5 & 灵敏度分析 109 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 {8 @& b& N' X: I  z& Q; E
4.5.1 C 有变化 110 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
# Y$ F$ E1 A7 Z2 D, V1 Z4.5.2 右端项改变 112 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 G9 g+ R: @! ^0 _% |7 J/ d, h( c. p4.5.3 a ij 改变 112 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
. m: K- W& ^+ Y5 d# t7 I8 H; G4.5.4 A 的列向量改变 114 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. J: {8 Y" u5 ^, i
4.5.5 A 的行向量改变 115 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: C3 b" T( {0 G3 u: o
4.5.6 增加新变量 117 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ h% O# _1 F7 C: y4 @* e5 P4.5.7 增加新约束条件 118 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
, Q+ T4 U% _! X! \1 e4.5.8 应用举例 120 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ K% c/ _5 M! m1 K4 \  g# Z· Ⅲ ·
1 W3 w" @) B% k8 E, o2 c4.5.9 参数规划 121 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: r  i- A4 G5 N) }# ?( ^
习题四 123 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
, E8 ~2 I* s/ m第 5 章 对偶原理与对偶单纯形法 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: n4 x1 E% d7 h* N) h6 s7 l
5.1 & 对偶问题 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& U9 v) Z9 T( `- m% B5.1.1 对偶问题定义 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; d. l1 r6 g9 I$ E' O& V5.1.2 对偶问题的意义 128 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ a) s3 h  `9 d9 D& f9 a; O8 Z' P
5.1.3 互为对偶 129 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: a7 F5 n. B' H' a2 ?
5.1.4 Ax= b 的情形 130 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 o' X4 d- B0 {
5.1.5 其他类型 131 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 A3 K: i1 S  I* ^5.2 & 对偶性质 132 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; a6 ?0 Q. Q, ]
5.2.1 弱对偶性质 132 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  e7 i) g$ O' s0 o" q5.2.2 强对偶定理 133 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 J) ^, j9 P0 y0 I/ f+ k5.2.3 min 问题的对偶解法 134 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 j* g5 H& V3 W2 B: H' W5.3 影子价格 139 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' c' U0 [8 a2 m0 z- y
5.4 & 对偶单纯形法 140 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) f4 g; A+ B% M+ {& e
5.4.1 基本公式 140 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 @( ~# x" ~- r( E5.4.2 对偶单纯形法 142 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 |5 {9 X; r( I
5.4.3 举例 142 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
' i/ i4 o, K) h& O5.5 & 主偶单纯形法 146 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 F5 u/ P2 R- M- }, f
5.5.1 问题的引入 146 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. v8 Z. P8 C# Y: F" X; N) _! p4 u5 H
5.5.2 主偶单纯形法之一 147 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* `1 u4 h  T7 x
5.5.3 主偶单纯形法之二 148 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
. |: G5 y- q( e; g1 u# L, a习题五 150 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 Q' u! y* G' H: i
第 6 章 运输问题及其他 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 E6 [3 [' ^2 v; j9 w
6.1 & 运输问题的数学模型 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯" y( H' N9 G  r. `
6.1.1 问题的提出 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# r; `. {5 y. z
6.1.2 运输问题的特殊性 153 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, X, P) C/ ?$ |& X9 k
6.2 矩阵 A 的性质 154 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 U( B/ }2 y5 C' C2 h* v6.3 & 运输问题的求解过程 155 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
- |; x: X  D" y. w6.3.1 求初始可行解的西北角法 155 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 L( [  B1 f' \; [1 ~0 v! K
6.3.2 最小元素法 157 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 a) g9 _+ X& B$ f9 R$ c6.3.3 图上作业法 158 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ _* ?8 |; `3 P& [: o6.4 c i - z i 的计算, 进入基的确定. }) h8 C; P, j
159 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 q. Z! W' `: s! p6 ]6.5 退出基的确定 160 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; [, G- j" V; ~$ v. O3 {# A
6.6 举例 162 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) F& B; u' M  J: ]9 d6.7 & 任务安排问题 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& c  |2 U7 @7 U: s1 V
6.7.1 任务安排与运输问题 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ a9 t9 z1 _# f9 J: P6 t% L. y* W
· Ⅳ ·
* I& X! t- g. i8 O0 P/ `7 H6.7.2 求解举例 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% t+ v; v* L& F+ ]$ r* H1 P/ l6.8 & 任务安排的匈牙利算法 171 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. F9 @$ _2 k" N4 D- K
6.8.1 代价矩阵 171 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯! |  k/ _4 z9 h( ?. ^
6.8.2 科涅格(Konig)定理 172 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& g! ?+ s$ I0 ?6 [. B
6.8.3 标志数法 173 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) Q) X* a% T0 t0 T3 j( O6.8.4 匈牙利算法 176 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 U; w) n( @: z9 j  {+ X6.8.5 匹配算法 179 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 P! j2 ~7 Y: \8 d* ?5 n
6.9 任务安排的分支定界法 180 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) Y. G. x. k3 x' A. Y( Y
6.10 一般的任务安排问题 182 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' `1 c1 U( d: j+ ]! D& @( e; D
6.11 \ 运输网络 185 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 B  C7 @, @4 F+ z7 c" G
6.11.1 网络流 185 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, H2 b3 ?# P7 D  x4 t
6.11.2 割切 186 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 S: B! |4 A* r; t
6.11.3 福德-福克逊( Ford-Fulkerson)定理 188 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6 h* j% b/ P+ M6.11.4 标号法 189 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ F4 t" A3 |5 h+ {1 v6 K1 H% s6.11.5 埃德蒙斯-卡普( Edmonds-Karp) 修正算法 191 ⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ r  C& c& H' q6.11.6 狄尼(Dinic) 算法 192 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# r3 d6 j! s2 [/ E. a6 v
习题六 194 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 f( {5 }2 [$ u! s. f7 W  w第 7 章 哈奇扬(Хачиян) 算法与卡玛卡(Karmarkar) 算法 196 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& ~8 p" B3 J: U8 F' W' R) \
7.1 克里(Klee)与明特( Minty)举例 196 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ j2 q# c0 R7 f. k: N5 Y& w7.2 & 哈奇扬算法 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* l! F9 O" J" A7.2.1 问题的转化 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 {) s* B2 a. K3 e7.2.2 哈奇扬算法步骤 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 I4 T% r; I! u' |9 r
7.2.3. N6 M6 B, `' S$ @- K4 h
*
0 ~! ^3 K" u1 _2 ?# _& I算法的正确性证明的准备 202 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( Q7 g5 ~$ P6 @" l$ A$ ]8 R
7.2.45 m: s! y0 C# y$ K
*" b& f2 E6 C" D' O# Y* y) c
定理的证明 205 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) _% _* K6 n# n- {, T, x
7.2.5( T, _  c9 j( x5 Y
*
0 g& e4 S" z: R' w. [$ [9 z- _严格不等式组 208 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 g# R: w( m5 O4 ^* E4 G
7.2.6
- W4 r  b8 V. n( x; ^*
. [/ K$ L. o' n3 j' x# c1 }3 j复杂性分析 210 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 _7 U3 ]  u; w; l7.3 & 卡玛卡算法与卡玛卡典型问题 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* f3 |) m% |5 W# n4 D
7.3.1 卡玛卡标准型 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ V* d1 u3 I. ?+ h( q7.3.2 化为标准型的方法之一 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 t; `8 H3 F% y1 ~" ?7.3.3 化为标准型的方法之二 216 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 l5 q( Y  r* D4 V; U  H. g* Z7.3.4 T 0 变换7 W3 s! L7 k- T# u% {) C; o
218 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 _7 g2 [  _: O: q& f7.3.5 卡玛卡算法步骤 219 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯! k, t" `/ [) R" z  @7 V3 C5 Q6 V
7.3.6 卡玛卡算法的若干基本概念 226 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
# T5 G1 h. A7 ]+ ^7.3.7 T k 变换的若干性质
0 v/ p# X, A7 P) N) H- m4 h5 a228 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 p8 \4 ]/ s( W7.3.8 势函数及卡玛卡算法复杂性 233 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 ?$ f' F5 L8 ~% s
习题七 239 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& q7 i7 l- `+ L+ t9 S第 8 章 多目标规划 241 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 ]$ w8 |) }0 r2 A7 [) G· Ⅴ ·& t. K- v* l! w) D1 o
8.1 问题的提出 241 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ e1 {7 g6 P" w8 I, i
8.2 多目标规划的几何解释 244 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 X; |& I& A3 @0 A
8.3 多目标规划的单纯形表格 249 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 P0 D2 F2 X9 A8 T5 u8 {2 ~6 |
8.4 多目标规划的目标序列化方法 253 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. w& k. D: F# U- [' T. M
8.5 多目标规划的灵敏度分析 258 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 a% R+ e# _8 ]4 Q# q2 t% u& s* F8.6 应用举例 269 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 X/ F5 Q6 b+ y+ `  c* B4 j. e+ V
习题八 272 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' b/ I% r4 D( h9 J
第 9 章 整数规划问题的 DFS 搜索法与分支定界法 277 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  n% T  Z6 @6 K8 k9 W+ t( ^+ y! d7 i9.1 问题的提出 277 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' y0 O9 k0 W( a) @$ t
9.2 整数规划的几何意义 281 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) x( z5 i: L; g9.3 可用线性规划求解的整数规划问题 283 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 T/ K. ?( D0 L+ Z* M9.4 & 0-1 规划和 DFS 搜索法 284 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 e' ~& ~- t( ?9 X9.4.1 穷举法 284 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
' U- ?: R, u6 c0 D+ r  g9.4.2 DFS 搜索法 285 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯% |2 ^- y0 c7 \  v+ O5 J
9.5 & 整数规划的 DFS 搜索法 288 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( ]( E  `4 s0 K9 C9 G0 e4 n$ ]. ]
9.5.1 搜索策略 288 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ w2 T3 H3 m$ m7 g6 K9.5.2 举例 291 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* S: c$ L% T8 ]" S6 g
9.6 & 替代约束 293 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 N1 \# w8 S8 L: |$ R( j! k0 l8 t9 A
9.6.1 吉阿福里昂(Geoffrion) 替代约束 293 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* ?/ _) O# n( ~5 R6 y) T
9.6.2 举例 295 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) D3 ]3 P6 I5 ]# R9.7 & 分支定界法介绍 301 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯  s# p. K7 [3 u. _7 ]6 I; X' y
9.7.1 对称型流动推销员问题 301 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
( N% D$ @0 s, ^# q+ L9 e9.7.2 非对称型流动推销员问题 302 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; ^) l0 S; N. Z! L3 y, f
9.7.3 最佳匹配问题 305 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ k# Q8 c( i% f2 D9.8 整数规划问题的分支定界解法 306 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  G; s* A& r; y- h- I# ~' I6 }9.9 分支定界法在解混合规划上的应用 311 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 ~% q8 J# M$ n! Y# n  a& g
9.10 估界方法 315 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 f# b4 m! n9 R  _$ G
习题九 321 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 D% |" W; y4 k: Y2 j$ v第 10 章 整数规划的割平面法 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# i3 F9 p: u: g- C0 h+ {( k
10.1 \ 割平面 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 H  p) O2 g: v9 n& d6 H) }
10.1.1 郭莫莱(Gomory)割平面方程 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 q: ?6 ?2 p- }0 u% t10.1.2 例 324 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( d/ t( u! p0 K3 X0 [9 [- C
10.2 割平面的选择 329 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: b/ x) \: G" r+ |! y/ Z- F$ F
10.3 马丁(Martin)割平面法 331 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) B5 b, A1 Q4 E5 g. c. A( H
10.4 \ 全整数割平面法 336 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ \3 C- s2 J: n8 m10.4.1 全整数单纯形表格 336 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 z6 X" m; j* B  u9 {: d; K10.4.2 举例 338 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' M& e' f  e, Z' E
· Ⅵ ·
1 H. x6 A8 `! T: H% N4 O10.4.3 确定 λ的策略 341 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 w7 |7 C. J% S0 ~
10.5 混合规划的割平面法 344 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
! {. |+ J2 M0 z5 H6 c习题十 346 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 \. i. n6 c5 _
第 11 章 奔德斯(Benders)分解算法与群的解法 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) f% S. r* D0 J, w6 ~+ y+ n11.1 \ 混合规划的奔德斯分解算法 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
, l+ x3 R, S5 T11.1.1 分解算法的原理 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: K1 z' ?3 x' [4 F& n
11.1.2 奔德斯分解算法 349 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 B* \) x& z* H. d11.1.3 算法举例 350 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' k/ ]  _/ H* d* `
11.2 \ 群的解法 360 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ ^2 o, W6 Q4 D6 w3 _0 G
11.2.1 群的解法原理 360 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 }, f$ }% |* n. v7 I11.2.2 举例 361 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ _; d1 `1 `3 R6 V$ C0 B: \11.3 \ 群的解法和最短路径问题 365 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* f( K2 t; \# z1 `) A
11.3.1 图的构造 365 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ v( ^4 }. A  u. Z' ?0 J+ _( Y! o3 A
11.3.2 求最短路径的戴克斯特拉(Dijkstra)算法 368 ⋯⋯⋯⋯⋯⋯⋯⋯⋯
) G/ ~  B" [' t* o0 u4 u  j5 |11.4 背包问题 369 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 y8 r* v8 g- p11.5 将整数规划归约为背包问题 371 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
  s' V4 r9 {0 K1 D; l11.6 背包问题的网络解法 373 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 `2 y" }3 f$ N$ c* Q11.7 背包问题的分支定界解法 374 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 C& M, H( n( t
11.8 \ 流动推销员问题的近似解法 380 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ g& v# g0 |2 G* v  \
11.8.1 最近插入法 380 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; h* N6 P# Y* k2 N% Y
11.8.2 最小增量法 381 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' o3 y+ f- C0 G2 u3 D% X9 [" ^" y
11.8.3 回路改进法 385 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
' F" R1 j3 ]- F习题十一 387 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; }5 K" d; B8 m3 k
第 12 章 动态规划算法 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) ?- A2 j8 r/ u$ k8 X& n# E12.1 \ 最短路径问题 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& V+ L3 i, q+ y& L0 r2 M
12.1.1 穷举法 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
. @0 S2 {# n3 L. F12.1.2 改进的算法 389 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* w) m" F2 u" C
12.1.3 复杂性分析 390 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* c6 \- Y/ E8 I& \
12.2 \ 最佳原理 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 u/ b  w0 E. c  _12.2.1 最佳原理 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 S% \2 k- ?) G8 W$ `* @) A
12.2.2 最佳原理的应用举例 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 b/ T+ L4 M$ _, Q( K! g4 y
12.3 \ 流动推销员问题 394 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: s% k% c& `3 G( v/ W
12.3.1 动态规划解法 394 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
" h% ^4 m6 K- u  [/ s12.3.2 复杂性分析 397 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 H+ ]0 [2 O$ S) `12.4 \ 任意两点间的最短距离 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: F0 f" d2 p% F; I) m( e6 K% f) w
12.4.1 距离矩阵算法 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 W6 v3 x4 K/ j% z
12.4.2 动态规划算法 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 T6 `, N5 }! U8 v* w6 |· Ⅶ ·7 I  m$ a& ~2 o4 J  c, p3 f# `
12.5 同顺序流水作业的任务安排 401 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& |( w4 T$ _% p  s12.6 \ 整数规划的动态规划解法 403 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 z8 `9 Z' E% m+ t- H3 y% H12.6.1 多段判决公式 403 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ @9 c' v7 e/ ^6 `! I12.6.2 举例 404 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' W* q" s& R8 [+ p( C8 Z' p& M
12.7 背包问题的动态规划解法 408 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 t, }2 f. _4 \
习题十二 412 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
! z3 q, |4 o% a8 b$ u" _参考文献 413: F% I8 S7 T. h3 W

7 J6 y9 Z1 B* k: I# n' ^  {# p, K& m3 D; F5 X) C- Z

(书籍)单目标、多目标与整数规划.pdf

1.94 MB, 下载次数: 2, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]


作者: lbh    时间: 2022-8-28 07:15
谢谢分享!!!2 s8 h; x2 T+ Z

作者: 1051373629    时间: 2022-10-22 09:47
感谢楼主的资料
/ C) t  y9 K6 m




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5