数学建模社区-数学中国

标题: python基于站点经纬度绘制降水空间散点分布图 [打印本页]

作者: 2744557306    时间: 2023-10-30 11:57
标题: python基于站点经纬度绘制降水空间散点分布图
导入库并读取数据
​​import numpy as npimport pandas as pdimport cartopy.crs as ccrsimport cartopy.feature as cfeatureimport matplotlib.pyplot as pltfrom matplotlib import colors, cmimport cmapsimport geocat.viz as gvfrom cartopy.io.shapereader import Readerdata=pd.read_csv('20190722.csv',dtype=np.float64,header=None,delimiter=',',encoding='gbk')lat=np.array(data[1])lon=np.array(data[2])rain=np.array(data[3])
% X. B  b0 D/ g1 u1 p/ B4 [
设置colorbar刻度及区间色调
scales = [0.1, 10, 25, 50, 75, 100]cmap = cmaps.rainbowboundaries = [0, 0.1, 10, 25, 50, 75, 100, 150]norm = colors.BoundaryNorm(boundaries, cmap.N)mappable = cm.ScalarMappable(norm=norm, cmap=cmap)
& Q6 c; f( f  E) [2 m6 ~
设置散点标记的颜色区间
marker_colors = mappable.to_rgba(boundaries)sizes = np.geomspace(10, 250, len(boundaries))plt.figure(figsize=(9, 6))projection = ccrs.PlateCarree()ax = plt.axes(projection=projection)ax.set_extent([97, 109, 26, 34], crs=projection)
5 b! I0 ?  j: p1 L4 [. K/ E# n
添加四川地图
shap=Reader('SCmap.shp').geometries()sichuan = cfeature.ShapelyFeature(shap,crs=ccrs.PlateCarree(),edgecolor='k', facecolor='none')ax.add_feature(sichuan)
9 O4 \; x$ F1 Y0 u
设置x、y轴经纬度刻度
​gv.set_axes_limits_and_ticks(ax,xticks=np.linspace(97, 109, 5),yticks=np.linspace(26, 34, 5))gv.add_lat_lon_ticklabels(ax)gv.add_major_minor_ticks(ax,x_minor_per_major=1,y_minor_per_major=1,labelsize=12)# Remove ticks on the top and right sides of the plotax.tick_params(axis='both', which='both', top=False, right=False)
' S( {9 h1 h: L" l& M
/ U! Z/ j; v5 G7 o" B
绘制不同降水区间散点图
masked_lon = np.where(rain < scales[0], lon, np.nan)masked_lat = np.where(rain < scales[0], lat, np.nan)plt.scatter(masked_lon,masked_lat,s=sizes[0],color=marker_colors[0],zorder=1)for x in range(1, len(scales)):    masked_lon = np.where(rain >= scales[x - 1], lon, np.nan)    masked_lon = np.where(rain < scales[x], masked_lon, np.nan)    masked_lat = np.where(rain >= scales[x - 1], lat, np.nan)    masked_lat = np.where(rain < scales[x], masked_lat, np.nan)    plt.scatter(masked_lon,masked_lat,s=sizes[x],color=marker_colors[x],zorder=1)masked_lon = np.where(rain >= scales[-1], lon, np.nan)masked_lat = np.where(rain >= scales[-1], lat, np.nan)plt.scatter(masked_lon,masked_lat,s=sizes[-1],color=marker_colors[-1],zorder=1)
5 e& t4 C+ {2 i% {! K2 E
考标记出某一站点
​plt.colorbar(mappable=mappable,ax=ax,orientation='horizontal',label='Rainfall Amount(mm)',             drawedges=True,format='%.2f',ticks=scales)plt.scatter(103.12,30.08,s=20)plt.annotate(r'$mingshan$', xy=(103.12,30.08),xytext=(4,-100),xycoords='data',textcoords='offset points',             fontsize=16,arrowprops=dict(arrowstyle='->',connectionstyle='arc3'))plt.savefig('test.png')( w5 F6 h# c# q' C  w9 Y
% E% L2 b$ h% ~" H& \% I

733ac825ly1hjd53re5hij20js0b43zu.jpg (120.88 KB, 下载次数: 220)

733ac825ly1hjd53re5hij20js0b43zu.jpg






欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5