[size=10.5000pt]训练方法 | [size=10.5000pt]训练函数 |
[size=10.5000pt]梯度下降法[size=10.5000pt] | [size=10.5000pt]traingd[size=10.5000pt] |
[size=10.5000pt]有动量的梯度下降法 | [size=10.5000pt]traingdm |
[size=10.5000pt]自适应lr梯度下降法 | [size=10.5000pt]traingda |
[size=10.5000pt]自适应lr动量梯度下降法 | [size=10.5000pt]traingdx |
[size=10.5000pt]弹性梯度下降法 | [size=10.5000pt]trainrp |
[size=10.5000pt]Fletcher-Reeves共轭梯度法 | traincgf |
[size=10.5000pt]Ploak-Ribiere共轭梯度法 | traincg[size=10.5000pt]p |
[size=10.5000pt]Powell-Beale共轭梯度法 | traincg[size=10.5000pt]b |
[size=10.5000pt]量化共轭梯度法 | [size=10.5000pt]trainscg |
[size=10.5000pt]拟牛顿算法 | [size=10.5000pt]trainbfg |
[size=10.5000pt]一步正割算法 | [size=10.5000pt]trainoss |
[size=10.5000pt]Levenberg-Marquardt | [size=10.5000pt]trainlm |
训练参数 | [size=10.5000pt]参数介绍 | [size=10.5000pt]训练函数 |
net.trainParam.epochs | [size=10.5000pt]最大训练次数(缺省为10)[size=10.5000pt] | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.goal | [size=10.5000pt]训练要求精度(缺省为0)[size=10.5000pt] | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.lr | [size=10.5000pt]学习率(缺省为0.01)[size=10.5000pt] | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.max_fail | [size=10.5000pt]最大失败次数(缺省为5) | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.min_grad | [size=10.5000pt]最小梯度要求(缺省为1e-10) | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.show | [size=10.5000pt]显示训练迭代过程(NaN表示不显示,缺省为25) | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.time | [size=10.5000pt]最大训练时间(缺省为inf) | [size=10.5000pt]traingd、traingdm、traingda、traingdx、trainrp、traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainscg、trainbfg、trainoss、trainlm |
net.trainParam.mc | [size=10.5000pt]动量因子(缺省0.9) | [size=10.5000pt]traingdm、traingdx |
net.trainParam.lr_inc | [size=10.5000pt]学习率lr增长比(缺省为1.05) | [size=10.5000pt]traingda、traingdx |
net.trainParam.lr_dec | [size=10.5000pt]学习率lr下降比(缺省为0.7) | [size=10.5000pt]traingda、traingdx |
net.trainParam.max_perf_inc | [size=10.5000pt]表现函数增加最大比(缺省为1.04) | traingda[size=10.5000pt]、traingdx |
net.trainParam.delt_inc | [size=10.5000pt]权值变化增加量(缺省为1.2) | [size=10.5000pt]trainrp |
net.trainParam.delt_dec | [size=10.5000pt]权值变化减小量(缺省为0.5) | [size=10.5000pt]trainrp |
net.trainParam.delt0 | [size=10.5000pt]初始权值变化(缺省为0.07) | [size=10.5000pt]trainrp |
net.trainParam.deltamax | [size=10.5000pt]权值变化最大值(缺省为50.0) | [size=10.5000pt]trainrp |
net.trainParam.searchFcn | [size=10.5000pt]一维线性搜索方法(缺省为srchcha) | traincgf[size=10.5000pt]、traincg[size=10.5000pt]p、traincg[size=10.5000pt]b、trainbfg、trainoss |
net.trainParam.sigma | [size=10.5000pt]因为二次求导对权值调整的影响参数(缺省值5.0e-5) | [size=10.5000pt]trainscg |
net.trainParam.lambda | [size=10.5000pt]Hessian矩阵不确定性调节参数(缺省为5.0e-7) | [size=10.5000pt]trainscg |
net.trainParam.men_reduc | [size=10.5000pt]控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1) | [size=10.5000pt]trainlm |
net.trainParam.mu | file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps11.png[size=10.5000pt]的初始值(缺省为0.001) | [size=10.5000pt]trainlm |
net.trainParam.mu_dec | file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps12.png[size=10.5000pt]的减小率(缺省为0.1) | [size=10.5000pt]trainlm |
net.trainParam.mu_inc | file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps13.png[size=10.5000pt]的增长率(缺省为10) | [size=10.5000pt]trainlm |
net.trainParam.mu_max | file:///C:/Users/312/AppData/Local/Temp/ksohtml28144/wps14.png[size=10.5000pt]的最大值(缺省为1e10) | [size=10.5000pt]trainlm |
168 KB, 下载次数: 0, 下载积分: 体力 -2 点
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) | Powered by Discuz! X2.5 |