数学建模社区-数学中国

标题: 求两个数的最大公约数和最小公倍数 [打印本页]

作者: 2744557306    时间: 2024-4-27 16:48
标题: 求两个数的最大公约数和最小公倍数
  1. m=sym(1856120); n=sym(1483720); [gcd(m,n), lcm(m,n)]. x, m, D' {- ^/ f

  2. 3 w0 |5 L5 `4 B- m( u4 n
  3. factor(lcm(n,m))
复制代码
这段代码是在 MATLAB 中执行以下操作:1 q! W% S/ @1 B: s8 ~7 I

- R7 P; \9 o6 i2 W1 u5 L1. `m=sym(1856120); n=sym(1483720);`: 这一行代码创建了两个符号变量 `m` 和 `n`,并分别赋予它们整数值 1856120 和 1483720。' x8 q& E8 i2 B+ J

# y+ b1 l" H* C! J- a% ]2. `[gcd(m,n), lcm(m,n)]`: 这一行代码使用 MATLAB 中的 `gcd` 和 `lcm` 函数来计算这两个整数 `m` 和 `n` 的最大公约数和最小公倍数。最大公约数存储在第一个元素中,最小公倍数存储在第二个元素中。
6 p, Q' F0 z( \2 t3 T! C
& Z. h4 `2 z) |6 {3. `factor(lcm(n,m))`: 这一行代码使用 MATLAB 中的 `factor` 函数来对 `m` 和 `n` 的最小公倍数进行因式分解,即将最小公倍数表示为其素因子的乘积形式。
$ P  r/ K6 _2 Z4 w2 M. l1 Z: T( b7 g0 s
因此,这段代码的目的是计算整数 1856120 和 1483720 的最大公约数、最小公倍数,并将最小公倍数表示为其素因子的乘积形式。1 ?- J6 R) z6 t% s& E8 x
5 i7 V' z& {+ w6 ^' t9 m- e
; _, H# X) u. n- @% \  E
3 R8 N7 X1 k% L2 E0 h4 D





欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5