数学建模社区-数学中国

标题: 微分几何简介 [打印本页]

作者: sea_star666    时间: 2009-3-20 23:32
标题: 微分几何简介
本帖最后由 sea_star666 于 2009-3-20 23:37 编辑
" |+ n4 O& ^0 K; q; T2 e
* @+ i- ?/ _; x0 v9 o5 g% j微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。
% ^/ V  r2 h2 M  l
微分几何的产生
     微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。
% c0 G1 S8 g% F9 U! H     十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。, u( ~) g% s: k1 u5 \
      1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。
) j# p; ?- x) K- ]     1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。
" F4 n' a* p" m- w9 f9 L. @0 ^     随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。 5 X" Z& V" L9 n8 j  v
微分几何学的基本内容
     微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。& m" A, |3 Z6 Z! I
    在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。
6 ]  U* ?, }( a8 |3 s1 r7 Z6 o    在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。
: H7 i2 \1 U  W. q( t/ _: j, A5 _     在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。) n( L' Z2 q- H, o- n: q
      近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。
9 m0 f3 E3 n2 f) F. l      微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。
作者: sea_star666    时间: 2009-3-20 23:39
“微分几何之父”陈省身
1 O& H( J- y+ b( {7 a- r/ N陈省身1930年毕业于南开大学,1934年毕业于清华大学研究院,其后赴德国汉堡大学深造。他曾任教于西南联合大学、美国普林斯顿大学、芝加哥大学和加州大学伯克利分校,是原中央研究院数学所、美国国家数学研究所、南开数学研究所的创始所长。陈省身开创并领导着整体微分几何、纤维丛微分几何、“陈省身示性类”等领域的研究,他是有史以来唯一获得世界数学界最高荣誉“沃尔夫奖”的华人,被称为“当今最伟大的数学家”,被国际数学界尊为“微分几何之父”。国际数学大师、中科院外籍院士陈省身在天津病逝,享年93岁。
作者: 蓝色忧郁    时间: 2009-3-21 17:58
陈省身、丘成桐都是伟大的微分几何学家
作者: 蓝色忧郁    时间: 2009-3-21 17:59
陈省身、丘成桐都是伟大的微分几何学家
作者: 周珂帆    时间: 2009-3-27 18:36
恩!知道了!好!
作者: Alan922    时间: 2009-4-4 16:06
名师出高徒,但不是所有人都那么幸运的
作者: shaq    时间: 2009-8-18 10:48
陈省身,中国人的 骄傲




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5