4 B7 S9 O8 N* Y- `0 Dexp(z) E! V. q& k( Q3 N0 s/ c; S4 l
复数的指数函数,表示e^z 8 \1 R5 ?/ m! s7 |9 I2 q9 c * S: ^: a7 d) Q. v: a+ h, ^0 C / x- t! X5 x" {" D# W7 p如何在matlab中表示集合 2 O; K* l; r9 E+ O
: l3 G: B1 S Y" ]! u+ D1 P$ g
[a, b, c,…] 表示由a, b, c,…组成的集合 (注意:元素之间也可用空格隔开) + O# ?+ t2 Z. G8 {2 E6 A1 A* n2 o7 a; k- M9 N
unique(A) 表示集合A的最小等效集合(每个元素只出现一次) 8 i" Q# p' X! v3 j+ R, \3 M7 g 7 g9 n! A9 s" R; |6 k, t也可调用maple的命令,格式如下: n# ~) s# X% t* s' i
9 D2 \' n. n' H; O7 w1 f. M4 ~% lmaple('{a, b, c,…}') 表示由a, b, c,…组成的集合 ( n0 T3 B2 Z9 Q+ N4 g( S+ \6 i 1 L( j8 `, G/ x4 }$ e- c下列命令可以生成特殊的集合: 8 |) u9 ]/ g1 M" W+ q 5 T I; ?; Z4 \2 R, S3 O9 O2 Xmaple(‘{seq(f(i),i=n..m)}’) 生成集合{f(n), f(n+1), f(n+2), … , f(m)} % j6 d. g5 ]1 C: W% b+ _! @$ ?# O5 |4 u 7 w+ s$ |0 z. K2 h; u/ N, V如何用Matlab求集合的交集、并集、差集和补集 $ T; [5 w1 z# ?: ^4 n( Z- x* d) {8 r* z) B
union(A,B) 5 I( S& y3 [7 k 求集合A和B的并集 , d; T2 E# O2 i* R G # w$ p: I* q; f4 I* Aintersect(A,B) $ D, D3 {/ M! ?7 Y, ] 求集合A和B的交集 / Y) b- p2 ^5 ` . C( b% }% B; D# {
setdiff(A,B) 9 a& \% a+ v* h B' J 求集合A和B的差集A-B " e: x& t6 N* ]3 P n: a6 S ! b1 j% t0 I$ _" W! z) U
setdiff(U,A) - ^4 e' [3 o) Y
求集合A关于全集U的补集* G& U7 Y+ |2 [" }, ^2 X# F
/ S; P4 @7 C' g! g" J2 g
& V" l0 R$ r& X+ `. e0 Y0 P
我们也可以调用Maple的相应功能,调用方法如下: 3 h% ^7 x( o+ z0 K% x6 r' [* [ e' r" b( k3 N7 {8 v
maple('用Maple求集合的交集、并集、差集和补集的命令 ') $ ]1 N9 K M4 ~" l, B/ X6 R6 C" j2 c9 d1 Q- `0 H4 @& i( ^
具体地说,共有下列几个调用命令: # l' U( M& W& y! o3 W8 q- I; ^( _7 ~3 X2 G( c. ~. B
maple( 'A union B' ) 求集合A和B的并集 4 ^! N m( s* ]- f) d
! u+ l1 C- T9 H& I5 A' gmaple( 'A intersect B ' ) 求集合A和B的交集 , v6 T/ a" L: g. V! T& _, ]# j ' i! H2 ~' l. J+ B8 r( v1 n' r3 Xmaple('A minus B ' ) 求差集A-B " \0 R- r8 L' P4 _- b ~: k! q) }4 \: @% ?1 {7 omaple( '全集I minus A ' ) 求集合A关于全集I的补集 + f* F& m* m; T( b
' g) T4 P, L, O
如何用matlab排序 5 l R6 d- s3 { l% U- V. ]8 A7 L
. w5 A" r# l9 @# Csort(v) 将向量v的元素从小到大排列(升序排列)作者: madio 时间: 2009-9-9 02:18
Symbolic Math Toolbox maple 3 D1 Q! M2 @' C' l" b ( ~# i& I& A4 ~ # Z# _2 c8 s$ i( aAccess Maple kernel $ z0 W" V$ ^1 r2 d
|7 V# [- Q' t
Syntax ' s; A% z2 A3 L& x5 k0 s 6 p: q! j. c2 S- C: dr = maple('statement') 0 A- q; o! k! u" ~$ ?) n1 Hr = maple('function',arg1,arg2,...) ' O" D+ C2 |1 C Y% a: J[r, status] = maple(...) 7 @7 Z/ R" i7 h$ O: Wmaple('traceon') or maple trace on 3 \ T8 W7 V! y! |- amaple('traceoff') or maple trace off4 F2 O' U$ @! ~( z7 O
8 l+ c5 u3 o( s 1 r# o: }; k, \7 O8 z* f; K4 O Q- E3 u2 ~ @
Description H! }) x4 R: F6 S1 z
, O a1 u& i1 W# b * ^6 x$ t1 g5 p" h9 s6 smaple('statement') sends statement to the Maple kernel and returns the result. A semicolon for the Maple syntax is appended to statement if necessary. 2 \7 X9 N+ [. v$ E0 W [' `; ?$ C3 |. X7 K# W- T
maple('function',arg1,arg2,...) accepts the quoted name of any Maple function and associated input arguments. The arguments are converted to symbolic expressions if necessary, and function is then called with the given arguments. If the input arguments are syms, then maple returns a sym. Otherwise, it returns a result of class char. 2 e" {" f5 A8 j0 c: d8 Y3 b$ f; D( O4 i$ e+ U
[r,status] = maple(...) is an option that returns the warning/error status. When the statement execution is successful, r is the result and status is 0. If the execution fails, r is the corresponding warning/error message, and status is a positive integer. 9 w# ~& a K# e! w0 I* r- E 0 R) _5 k$ S8 M# {& @; Kmaple('traceon') (or maple trace on) causes all subsequent Maple statements and results to be printed. maple('traceoff') (or maple trace off) turns this feature off. - j+ D* }8 J5 `% L2 ?) v: p1 M0 G U4 W9 ^* p* w k* h9 D0 q- fExamples ; l+ u# e# T6 \8 \5 ]. ?# H 1 T7 B9 O+ a6 `* w: d& D. q5 M1 j 8 }( j, W- F/ }% AEach of the following statements evaluate to 100 digits. / o7 D& }/ x* n" ~3 g
maple('evalf(Pi,100)')$ Y: C: h$ e2 y% s
maple evalf Pi 100 6 P# T4 c( L. d+ {2 U( e5 dmaple('evalf','Pi',100)! t2 u9 Y% E1 b" Y
6 M6 C, j2 B% @0 w0 {. m$ [. V4 x5 o6 L6 Y
. p- M( Z! p% a* lThe statement 3 W, e( Q7 O$ C' p0 D
[result,status] = maple('BesselK',4.3) 1 t1 k3 c; ^2 v4 o- i' p3 y ! i; E- l* g& d3 i ( Q) ]' G8 v4 I5 B& @) u$ C2 M* ?2 \# [# w# I4 T2 D
returns the following output because Maple's BesselK function needs two input arguments. 2 O+ _5 y! i8 D. r
result =2 s9 |' b1 ~8 A4 G) V% g
Error, (in BesselK) expecting 2 arguments, got 1* }7 ]. N1 e) c6 N8 s) {! ]" H
status =# g1 G4 A3 o# x- I( e5 P4 Z
2& q8 \! C0 o/ D. m8 N
1 G+ c5 f' T4 O9 M0 v9 z* r: u% _
6 Y; g- l! p0 Q7 f2 [The traceon command shows how Symbolic Math Toolbox commands interact with Maple. For example, the statements - F! u9 U& ?: ~8 Z1 B# M6 A- ^& qsyms x' p- }) E# S) [' Y
v = [x^2-1;x^2-4] 0 f' e- d' ?9 w# w' e* w' Dmaple traceon % or maple trace on 0 p% a$ ?4 h9 s1 t, ww = factor(v)' S6 f8 k) R1 [
* R+ l: G7 h! k
+ D9 o) x6 Q, s' ^
0 C% J8 g% K; M: ~3 m/ C. |
return . ?# J/ }& a; M0 x
v =( h6 s) a. t6 A/ v6 o& s
[ x^2-1]* B: J* A0 O/ A6 z
[ x^2-4]) W5 d% U5 M) E3 p$ @
^; J: q1 K6 X1 p' t4 _1 @statement: * E& Y! N, t5 C0 V' Q map(ifactor,array([[x^2-1],[x^2-4]])); 7 y- c9 R( f+ B0 cresult:1 Q4 k5 p6 |$ d# H a/ c) z5 m9 W
Error, (in ifactor) invalid arguments* b. O+ D& y( C- E
statement: ! u; {6 ^ s, E9 p. v; e map(factor,array([[x^2-1],[x^2-4]])); % X* W4 Q! s; P/ x: T P# }& ?result: , H: l0 j8 b. U; o4 V' ^( g; x8 v matrix([[(x-1)*(x+1)], [(x-2)*(x+2)]]) ] T6 f. m) l% s
5 Q! y! s5 T" T0 r( T( j/ x2 x' R
w =6 Z% L W a0 T: d# }