Entries A to Z.5 z0 n: j- F) \4 ?
abc conjecture.
abundant number.
AKS algorithm for primality testing. & ~! _4 F1 b8 E* b" s$ b t
aliquot sequences (sociable chains).
almost-primes. 4 R4 X/ |/ s, Y- h
amicable numbers. ; ~0 r8 N0 ?& g& \% P
amicable curiosities.
Andrica’s conjecture.
arithmetic progressions, of primes.
Aurifeuillian factorization.
average prime.
Bang’s theorem.
Bateman’s conjecture.
Beal’s conjecture, and prize.
Benford’s law.
Bernoulli numbers.
Bernoulli number curiosities. ( _- O7 G" S3 X: ?' }' e
Bertrand’s postulate. - H, j, ~; X% W m
Bonse’s inequality.
Brier numbers.
Brocard’s conjecture. # {( i! [ u ~
Brun’s constant. ' J" Y/ _7 D5 e1 }. m
Buss’s function.
Carmichael numbers.
Catalan’s conjecture.
Catalan’s Mersenne conjecture.
Champernowne’s constant. 6 F1 g) _5 }! ~+ W8 H5 ?; U5 @
champion numbers. 7 i& R: Y5 v0 y2 v( f! V9 _
Chinese remainder theorem.
cicadas and prime periods.
circle, prime.
circular prime.
Clay prizes, the.
compositorial. & b: B" I. V7 g
concatenation of primes.
conjectures. 2 @- O9 @+ r6 V% O/ |4 t$ Q
consecutive integer sequence.
consecutive numbers.
consecutive primes, sums of.
Conway’s prime-producing machine. / n! I* C7 u4 f# L
cousin primes. 4 r! B' u" s8 i( T- H7 q/ ]; b
Cullen primes.
Cunningham project.
Cunningham chains. ; m7 ~2 g" U/ G& a3 B) q
decimals, recurring (periodic). : u8 {6 D. N, g* j' z
the period of 1/13. & d$ ]) s; Y3 q% Q K, J8 z2 U
cyclic numbers. - t' n' X H2 n/ c) q+ P6 {0 j
Artin’s conjecture.
the repunit connection. 5 w) X0 r* W, D8 @1 q
magic squares.
deficient number. 7 C$ e1 Z) F$ A* j' @$ u9 L! H& Q
deletable and truncatable primes. - c- T: O7 b# O+ r& p3 _
Demlo numbers. $ d9 G0 s/ K+ |$ O
descriptive primes. / C3 n% ?' Z4 T' @& R0 K0 f( z
Dickson’s conjecture. 2 m& d8 r- V7 B' E
digit properties.
Diophantus (c. AD 200; d. 284). . h8 [, S7 s1 q
Dirichlet’s theorem and primes in arithmetic series.
primes in polynomials.
distributed computing.
divisibility tests. ! o$ D. {9 S* W+ J. c6 h" @5 f6 D
divisors (factors).
how many divisors? how big is d(n)? 9 `1 U1 ]6 e: l+ }; c2 E
record number of divisors.
curiosities of d(n). / f+ y" X. I) r8 |/ `: ]. f( q
divisors and congruences.
the sum of divisors function.
the size of σ(n). 3 w" ]' G* W1 W G9 a8 w [0 C) Y
a recursive formula. % w* ^7 | Y* c1 c" d
divisors and partitions.
curiosities of σ(n).
prime factors. 7 |( S0 n: ?7 U* y
divisor curiosities.
economical numbers.
Electronic Frontier Foundation. 2 G% @) q. z- F9 ?/ c
elliptic curve primality proving.
emirp.
Eratosthenes of Cyrene, the sieve of.
Erd?s, Paul (1913–1996).
his collaborators and Erd?s numbers.
errors. ) a) x+ }9 ~* m! g
Euclid (c. 330–270 BC).
unique factorization.
&Radic;2 is irrational.
Euclid and the infinity of primes.
consecutive composite numbers. ) v1 K0 m1 k7 C2 o8 l) `7 U
primes of the form 4n +3. 0 r- i" h; v b: w* r
a recursive sequence. 6 [" I) r2 P: x5 |' b
Euclid and the first perfect number.
Euclidean algorithm.
Euler, Leonhard (1707–1783). 6 D) E9 [6 n( U* G1 c
Euler’s convenient numbers.
the Basel problem. # j6 n5 J5 b( S6 w8 K# }
Euler’s constant. % \0 N, A4 S5 ]) b. {+ S
Euler and the reciprocals of the primes.
Euler’s totient (phi) function.
Carmichael’s totient function conjecture.
curiosities of φ(n).
Euler’s quadratic. . w! K: m- p! F; D
the Lucky Numbers of Euler. 2 f A7 C2 i3 ~1 J$ b4 y0 O% Q
factorial.
factors of factorials. 5 B. L2 L7 l" Z: x, C9 Y& J
factorial primes. ! _* c' ~* ^! @. x/ M# P
factorial sums. / C# h% y& F! ?# m
factorials, double, triple . . . .
factorization, methods of.
factors of particular forms. % |$ |6 ]) D# ~5 G( [; B) m
Fermat’s algorithm. ( ]' g3 v% B2 u" N3 t5 `
Legendre’s method.
congruences and factorization. ( K+ u: k L) W( B
how difficult is it to factor large numbers? ( n% @) b8 d. t3 P
quantum computation.
Feit-Thompson conjecture.
Fermat, Pierre de (1607–1665). + d) V% s" k6 t, I
Fermat’s Little Theorem.
Fermat quotient.
Fermat and primes of the form x<sup>2</sup> + y<sup>2</sup>. 3 W% k; a1 A/ q1 L& {, ]% x8 u
Fermat’s conjecture, Fermat numbers, and Fermat primes.
Fermat factorization, from F<sub>5</sub> to F<sub>30</sub>. * M, V+ G* R1 j9 y
Generalized Fermat numbers.
Fermat’s Last Theorem.
the first case of Fermat’s Last Theorem. ( h+ }2 T+ }0 D; F
Wall-Sun-Sun primes. - [& d2 A" n0 n
Fermat-Catalan equation and conjecture. 3 }# D% W& V! y: U" J9 s
Fibonacci numbers.
divisibility properties.
Fibonacci curiosities.
édouard Lucas and the Fibonacci numbers.
Fibonacci composite sequences.
formulae for primes.
Fortunate numbers and Fortune’s conjecture. 2 [% G# @7 @) h( r8 b5 R
gaps between primes and composite runs. / O \8 V- X4 h! U: Q5 R- J8 g
Gauss, Johann Carl Friedrich (1777–1855). ) @0 `: |. W. e# _! Y- `; @
Gauss and the distribution of primes. / ^/ S6 ~+ c8 Z5 d' P3 c% f. \
Gaussian primes.
Gauss’s circle problem. / m" R$ J7 E. S! m( @
Gilbreath’s conjecture.
GIMPS—Great Internet Mersenne Prime Search. " d( l7 P! Y0 n! R& z2 R S1 p
Giuga’s conjecture. , p, g5 @7 o/ P4 y9 M, J; \
Giuga numbers. 6 D, }+ x+ w1 W c6 P
Goldbach’s conjecture. / l B: s) `1 }4 m
good primes. 2 `4 F1 o" k8 m& l# M% a' p0 j
Grimm’s problem.
Hardy, G. H. (1877–1947).
Hardy-Littlewood conjectures.
heuristic reasoning.
a heuristic argument by George Pólya.
Hilbert’s 23 problems. * d3 Q# J- n2 o: ]1 _8 x
home prime. ' T# b+ B- j; ?: G% G* P! u
hypothesis H.
illegal prime.
inconsummate number. ( ?8 M% {4 S( i0 Q( \' N( m( i- u
induction. ( j2 l. ?" {7 A- k
jumping champion.
k-tuples conjecture, prime. : m( l; }! Q a! f/ m. C7 b
knots, prime and composite. 3 U3 R, i Y3 I1 m# _
Landau, Edmund (1877–1938).
left-truncatable prime. $ c' s3 r$ @2 h( X3 \5 b. t
Legendre, A. M. (1752–1833).
Lehmer, Derrick Norman (1867–1938).
Lehmer, Derrick Henry (1905–1991).
Linnik’s constant. % g3 e0 {+ @9 g/ z
Liouville, Joseph (1809–1882).
Littlewood’s theorem.
the prime numbers race. $ \+ `8 ^, B0 [: @1 g
Lucas, édouard (1842–1891). " L. j i- K. V1 G
the Lucas sequence.
primality testing.
Lucas’s game of calculation.
the Lucas-Lehmer test.
lucky numbers.
the number of lucky numbers and primes. 2 x$ R9 u' f- i! S$ O
“random” primes. $ D4 w' I: W; v
magic squares.
Matijasevic and Hilbert’s 10th problem. $ U. k! K) d/ A, T) i
Mersenne numbers and Mersenne primes.
Mersenne numbers. : _+ \; q; [2 f: `8 O
hunting for Mersenne primes. ) t7 w' W0 ?6 ^) N/ u a6 w
the coming of electronic computers. 5 u7 I/ G$ W) u5 ^5 Q( `
Mersenne prime conjectures. + k" a2 C1 _. e
the New Mersenne conjecture.
how many Mersenne primes?
Eberhart’s conjecture. 7 C0 b$ P5 E( q; Q; |5 S
factors of Mersenne numbers.
Lucas-Lehmer test for Mersenne primes.
Mertens constant. 1 p, X5 R" F' F* `5 a+ {* `* c
Mertens theorem.
Mills’ theorem. 9 [! \# u# C, B+ I
Wright’s theorem. , h: N% W0 @$ t' h, `
mixed bag. 6 e' m+ J; y/ G5 a/ _
multiplication, fast.
Niven numbers. 7 s" z, F. s& M8 _" |
odd numbers as p + 2a<sup>2</sup>.
Opperman’s conjecture.
palindromic primes.
pandigital primes.
Pascal’s ** and the binomial coefficients.
Pascal’s ** and Sierpinski’s gasket. # a5 r% i) W1 Z" {: E
Pascal ** curiosities. { b0 g: b( T/ `6 n. T5 ~% m6 R! ~
patents on prime numbers. * M) Q) t$ K6 o4 h# j3 k
Pépin’s test for Fermat numbers. . K5 w$ I: {: U9 J' v' r
perfect numbers. % |9 \3 ~4 Q2 |7 @. f
odd perfect numbers.
perfect, multiply.
permutable primes.
π, primes in the decimal expansion of. a5 A7 O1 C) t9 b$ b1 o3 T9 P
Pocklington’s theorem. / A' n! d& ?# M, H7 B6 S
Polignac’s conjectures. O$ |' L9 w3 S
Polignac or obstinate numbers.
powerful numbers. 8 I$ p" P/ S/ G, P+ e5 ?/ r7 q: P
primality testing.
probabilistic methods.
prime number graph. 9 T/ q$ B; ~2 B" H8 o
prime number theorem and the prime counting function. $ ]4 |3 Z+ r, Z" D: |
history.
elementary proof. @( N" l- u' O7 I) s2 \: R
record calculations. 7 Z$ _& ^) i& u- x
estimating p(n). ! }. e2 X0 _! q) r2 T. I
calculating p(n). ) _) @2 j; F# l4 F. p8 b
a curiosity. 3 s2 r5 h/ C" X) ~
prime pretender. ! w7 r$ M9 d. Q* K" C
primitive prime factor.
primitive roots.
Artin’s conjecture.
a curiosity. 4 l& z; E/ @8 q
primordial.
primorial primes.
Proth’s theorem. ' {! f3 ]0 U( |
pseudoperfect numbers. 4 ]4 z" i# `% W
pseudoprimes. 5 p* P. ]+ ~1 q/ E
bases and pseudoprimes. " a+ J2 o2 d) @- w/ E
pseudoprimes, strong. ( n5 I- C, V2 o$ z9 L! z
public key encryption. ; c4 J8 l. b! p0 z; `) P, l: F) Q
pyramid, prime.
Pythagorean **s, prime. ; S$ G G- Y* o
quadratic residues. 8 b& B1 C+ y) `- u
residual curiosities. 3 O7 x: ^7 Q' R% ? a/ M+ i
polynomial congruences. 3 v0 X4 y2 M, s# ]" ^+ ]1 t
quadratic reciprocity, law of.
Euler’s criterion.
Ramanujan, Srinivasa (1887–1920). - r' i, |, ?8 \) O5 q8 R) \% @0 t) k
highly composite numbers.
randomness, of primes.
Von Sternach and a prime random walk. ! ^ _; T, n# \7 p
record primes.
some records. ! Z- e( l( C8 M3 u; w
repunits, prime. - R3 |) I/ \5 Q% Z! p
Rhonda numbers.
Riemann hypothesis. : z1 k/ U) M4 u8 R$ T
the Farey sequence and the Riemann hypothesis. h" g, z- p# Q, n& h
the Riemann hypothesis and σ(n), the sum of divisors function.
squarefree and blue and red numbers. 1 c3 C9 l# |' B$ @
the Mertens conjecture. 1 Z2 ^- F" g4 C. [! X9 g; s$ w
Riemann hypothesis curiosities.
Riesel number. ) |0 q5 b+ g/ z1 n" I# n: N
right-truncatable prime. , p; q( C F2 u2 k" T$ Y
RSA algorithm.
Martin Gardner’s challenge. ' X8 q9 Z0 K# W7 M- q/ g6 w
RSA Factoring Challenge, the New. / G2 c/ i, i+ S0 _
Ruth-Aaron numbers.
Scherk’s conjecture.
semi-primes. , i* N+ o2 W1 F- p* b$ F. X8 `
**y primes. 3 i. Z: C0 p3 j" d
Shank’s conjecture. 7 ]& b! h/ T+ h# H" N2 K- P
Siamese primes. 2 A8 d* K/ ?8 u9 J
Sierpinski numbers. + B# g0 |- R+ S8 b7 O
Sierpinski strings.
Sierpinski’s quadratic. 2 o" Q8 J/ s1 O4 o
Sierpinski’s φ(n) conjecture. 7 u* b! j, a1 f7 ?7 Z
Sloane’s On-Line Encyclopedia of Integer Sequences.
Smith numbers. ! F4 W1 Z+ S4 P8 q
Smith brothers.
smooth numbers. 2 e3 n" F8 F8 h" |
Sophie Germain primes.
safe primes.
squarefree numbers. / \6 B8 t7 f6 N7 N3 v
Stern prime. 0 I1 H/ @ ?( g$ S
strong law of small numbers.
triangular numbers.
trivia.
twin primes.
twin curiosities.
Ulam spiral. # b3 j0 ^% E2 D
unitary divisors.
unitary perfect. , ?/ k) B* L$ r* p% K" z
untouchable numbers. + q3 n' ]2 J, R; H8 U6 W* E4 K
weird numbers.
Wieferich primes. - j+ V* L G# l0 Q E
Wilson’s theorem. / U, H- |+ F2 L5 r; N5 v; D. S/ x
twin primes.
Wilson primes. - p( U6 U+ h6 c/ Z" u
Wolstenholme’s numbers, and theorems. / h( c8 M# ?9 b( p+ D* z
more factors of Wolstenholme numbers. 2 P0 c f! Y) {! J7 V5 |2 k
Woodall primes. 0 W" x4 O f9 ~+ F+ @
zeta mysteries: the quantum connection.
欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) | Powered by Discuz! X2.5 |