数学建模社区-数学中国

标题: 数字的奇妙:素数 [打印本页]

作者: clanswer    时间: 2010-4-13 11:41
标题: 数字的奇妙:素数
本帖最后由 clanswer 于 2010-4-13 11:43 编辑
3 ~  D8 I: V3 e  x+ w' c& z( M2 }" Q9 q3 @" L% a/ K' U
以下是目录,如果觉得合你胃口,可以在后面直接下载附件。
Entries A to Z.
; L+ r$ `- O: @9 }1 labc conjecture.
8 n0 |; u. U& f; ]abundant number.
! u& t7 ~2 C# Z* A! ~: e0 zAKS algorithm for primality testing. & ~! _4 F1 b8 E* b" s$ b  t
aliquot sequences (sociable chains).
& l" _. ~% w8 B; v& S  u9 ralmost-primes. 4 R4 X/ |/ s, Y- h
amicable numbers. ; ~0 r8 N0 ?& g& \% P
amicable curiosities.
& s' ?7 {+ s8 k7 i/ E) KAndrica’s conjecture.
. F7 S$ z0 w+ Q# N3 zarithmetic progressions, of primes.
0 n6 l7 X- O0 q$ ?8 `9 HAurifeuillian factorization.
% h+ r& l. n1 F8 daverage prime.
+ W: W' V: m* y9 H6 ]; @1 r3 g- g  iBang’s theorem.
  d5 F9 h, S2 m+ G+ L$ |; rBateman’s conjecture.
  L/ q3 D1 e) ]7 R3 f! hBeal’s conjecture, and prize.
8 C- Q# H; S* `5 r! {Benford’s law.
$ S1 |6 K2 b7 ^Bernoulli numbers.
$ i9 b& _! X/ v7 _+ P7 hBernoulli number curiosities. ( _- O7 G" S3 X: ?' }' e
Bertrand’s postulate. - H, j, ~; X% W  m
Bonse’s inequality.
9 u$ s% [; J' G& H; Z1 r% Y* kBrier numbers.
: [# t/ d1 u7 y8 B7 L% g2 oBrocard’s conjecture. # {( i! [  u  ~
Brun’s constant. ' J" Y/ _7 D5 e1 }. m
Buss’s function.
( e( q  ^: R% H4 ?2 ^) [Carmichael numbers.
8 |" t- e# P3 d# @Catalan’s conjecture.
% ^1 w! c3 C1 J5 ^$ t, m. u' oCatalan’s Mersenne conjecture.
9 @' p, L7 ?  UChampernowne’s constant. 6 F1 g) _5 }! ~+ W8 H5 ?; U5 @
champion numbers. 7 i& R: Y5 v0 y2 v( f! V9 _
Chinese remainder theorem.
0 V( }/ S3 [1 x( w* K+ m" U( Xcicadas and prime periods.
4 G' C8 u& X. ycircle, prime.
! e/ A5 Z$ o4 }: A* Y+ J% Fcircular prime.
: F" |2 W3 j# x9 _( ^8 P3 Q4 BClay prizes, the.
' V- c- D/ z; \( Hcompositorial. & b: B" I. V7 g
concatenation of primes.
5 f4 l. i+ k0 V7 L% A2 F- @7 qconjectures. 2 @- O9 @+ r6 V% O/ |4 t$ Q
consecutive integer sequence.
  y* B% Q/ u& m# g% L0 a1 iconsecutive numbers.
4 @3 f1 t$ Z1 G% a& Vconsecutive primes, sums of.
* t. ?% p- D5 j; \* X# d, v% b1 l; WConway’s prime-producing machine. / n! I* C7 u4 f# L
cousin primes. 4 r! B' u" s8 i( T- H7 q/ ]; b
Cullen primes.
1 W& r: l6 T) v, C% dCunningham project.
3 L) T9 U4 y0 q2 H+ q0 jCunningham chains. ; m7 ~2 g" U/ G& a3 B) q
decimals, recurring (periodic). : u8 {6 D. N, g* j' z
the period of 1/13. & d$ ]) s; Y3 q% Q  K, J8 z2 U
cyclic numbers. - t' n' X  H2 n/ c) q+ P6 {0 j
Artin’s conjecture.
4 {: p. H, d0 `, Y. v7 a6 {the repunit connection. 5 w) X0 r* W, D8 @1 q
magic squares.
8 w& t) }5 n+ B0 Rdeficient number. 7 C$ e1 Z) F$ A* j' @$ u9 L! H& Q
deletable and truncatable primes. - c- T: O7 b# O+ r& p3 _
Demlo numbers. $ d9 G0 s/ K+ |$ O
descriptive primes. / C3 n% ?' Z4 T' @& R0 K0 f( z
Dickson’s conjecture. 2 m& d8 r- V7 B' E
digit properties.
* L( I* ~5 A$ Z3 ?- U0 j( m$ oDiophantus (c. AD 200; d. 284). . h8 [, S7 s1 q
Dirichlet’s theorem and primes in arithmetic series.
5 C: ?5 D* \, _$ L- e+ bprimes in polynomials.
2 H6 n2 p0 X. {, k8 qdistributed computing.
, X- [- z) s/ B) Odivisibility tests. ! o$ D. {9 S* W+ J. c6 h" @5 f6 D
divisors (factors).
% h) b0 X! @0 Z9 r/ F% uhow many divisors? how big is d(n)? 9 `1 U1 ]6 e: l+ }; c2 E
record number of divisors.
0 @. ~7 p; W' ncuriosities of d(n). / f+ y" X. I) r8 |/ `: ]. f( q
divisors and congruences.
  Y- S- n5 v$ p5 p+ m, ^- kthe sum of divisors function.
1 G. F, {. |  Tthe size of σ(n). 3 w" ]' G* W1 W  G9 a8 w  [0 C) Y
a recursive formula. % w* ^7 |  Y* c1 c" d
divisors and partitions.
& H  C4 {/ i9 V) o- M' l: ^$ K. Ccuriosities of σ(n).
- Z2 e3 w% M6 R* T% k5 ~prime factors. 7 |( S0 n: ?7 U* y
divisor curiosities.
- N* Y- s9 r( Reconomical numbers.
4 ^2 c: D2 T0 G/ S- i  BElectronic Frontier Foundation. 2 G% @) q. z- F9 ?/ c
elliptic curve primality proving.
( x* _3 j# y$ v9 Oemirp.
( c" J6 M5 {: R) @' d% aEratosthenes of Cyrene, the sieve of.
5 \0 C- x+ p- Z4 nErd?s, Paul (1913–1996).
! {8 {; e7 i- W+ Rhis collaborators and Erd?s numbers.
# ^2 I# W! N8 v7 m+ V$ o# o  }, }" werrors. ) a) x+ }9 ~* m! g
Euclid (c. 330–270 BC).
# `( p6 e7 `; L6 G3 E! i- r$ |+ Ounique factorization.
- k3 T* T5 }& A. v. B5 d# [&Radic;2 is irrational.
( I: `$ K& [9 n8 J- y, Q8 qEuclid and the infinity of primes.
9 d& z7 P9 q  l) D* ]' y. Cconsecutive composite numbers. ) v1 K0 m1 k7 C2 o8 l) `7 U
primes of the form 4n +3. 0 r- i" h; v  b: w* r
a recursive sequence. 6 [" I) r2 P: x5 |' b
Euclid and the first perfect number.
0 i# M& r5 F2 o1 [/ Y2 oEuclidean algorithm.
4 G% J4 W2 \1 x/ C- G- KEuler, Leonhard (1707–1783). 6 D) E9 [6 n( U* G1 c
Euler’s convenient numbers.
2 v3 f( R7 C+ Wthe Basel problem. # j6 n5 J5 b( S6 w8 K# }
Euler’s constant. % \0 N, A4 S5 ]) b. {+ S
Euler and the reciprocals of the primes.
$ k1 f& f0 z9 B  ]1 jEuler’s totient (phi) function.
7 X7 ^% @' b! z0 e( dCarmichael’s totient function conjecture.
9 g' T& m2 r* F" l$ O3 G( q4 Jcuriosities of φ(n).
/ S* s4 B. A( _! a; y8 AEuler’s quadratic. . w! K: m- p! F; D
the Lucky Numbers of Euler. 2 f  A7 C2 i3 ~1 J$ b4 y0 O% Q
factorial.
+ ]* m3 D& |+ X3 ^5 `, F! H3 S2 cfactors of factorials. 5 B. L2 L7 l" Z: x, C9 Y& J
factorial primes. ! _* c' ~* ^! @. x/ M# P
factorial sums. / C# h% y& F! ?# m
factorials, double, triple . . . .
; f" J0 u) C7 ?0 Ifactorization, methods of.
. b3 f1 w, x; V- Sfactors of particular forms. % |$ |6 ]) D# ~5 G( [; B) m
Fermat’s algorithm. ( ]' g3 v% B2 u" N3 t5 `
Legendre’s method.
( H! p# Z, c; Y/ M' Acongruences and factorization. ( K+ u: k  L) W( B
how difficult is it to factor large numbers? ( n% @) b8 d. t3 P
quantum computation.
* e! M- S3 V% l, [' S6 dFeit-Thompson conjecture.
+ ?5 T; l* X! n8 p  z. B% gFermat, Pierre de (1607–1665). + d) V% s" k6 t, I
Fermat’s Little Theorem.
1 p9 s! D& m  F1 Z3 c( V" y  ?Fermat quotient.
" S  q' e7 g4 z# Q& ~+ n8 gFermat and primes of the form x<sup>2</sup> + y<sup>2</sup>. 3 W% k; a1 A/ q1 L& {, ]% x8 u
Fermat’s conjecture, Fermat numbers, and Fermat primes.
( [+ M7 N8 X. E/ r1 Q5 k/ sFermat factorization, from F<sub>5</sub> to F<sub>30</sub>. * M, V+ G* R1 j9 y
Generalized Fermat numbers.
& w' v& z  x6 R, AFermat’s Last Theorem.
" k1 Z3 k6 }. E/ }7 qthe first case of Fermat’s Last Theorem. ( h+ }2 T+ }0 D; F
Wall-Sun-Sun primes. - [& d2 A" n0 n
Fermat-Catalan equation and conjecture. 3 }# D% W& V! y: U" J9 s
Fibonacci numbers.
% h; e5 b" {( {. N( X4 x; H3 \divisibility properties.
. H( w9 H- ?: r; f, VFibonacci curiosities.
; Y' W! ~. @+ ^4 Q5 V( Uédouard Lucas and the Fibonacci numbers.
9 o6 l9 \+ b/ n) y* w- [8 ~Fibonacci composite sequences.
' h2 x, t+ A+ T; f" Z' ~6 y0 ^1 Wformulae for primes.
# n+ j+ [2 ~8 f  B- WFortunate numbers and Fortune’s conjecture. 2 [% G# @7 @) h( r8 b5 R
gaps between primes and composite runs. / O  \8 V- X4 h! U: Q5 R- J8 g
Gauss, Johann Carl Friedrich (1777–1855). ) @0 `: |. W. e# _! Y- `; @
Gauss and the distribution of primes. / ^/ S6 ~+ c8 Z5 d' P3 c% f. \
Gaussian primes.
, W, _9 P1 {6 M2 ?+ P; M0 ~; @' tGauss’s circle problem. / m" R$ J7 E. S! m( @
Gilbreath’s conjecture.
5 d/ S6 u+ f7 jGIMPS—Great Internet Mersenne Prime Search. " d( l7 P! Y0 n! R& z2 R  S1 p
Giuga’s conjecture. , p, g5 @7 o/ P4 y9 M, J; \
Giuga numbers. 6 D, }+ x+ w1 W  c6 P
Goldbach’s conjecture. / l  B: s) `1 }4 m
good primes. 2 `4 F1 o" k8 m& l# M% a' p0 j
Grimm’s problem.
8 }, V+ P, Y' s5 \2 ZHardy, G. H. (1877–1947).
3 k& D2 q" m2 }! dHardy-Littlewood conjectures.
: j% T) ~0 f0 s3 lheuristic reasoning.
4 j: N9 D( }6 t5 h. g4 La heuristic argument by George Pólya.
, Y% T+ e8 b) I( j  M+ _; [Hilbert’s 23 problems. * d3 Q# J- n2 o: ]1 _8 x
home prime. ' T# b+ B- j; ?: G% G* P! u
hypothesis H.
: }' j# ]+ R/ |illegal prime.
- ?0 @  y- a  H; i- g, zinconsummate number. ( ?8 M% {4 S( i0 Q( \' N( m( i- u
induction. ( j2 l. ?" {7 A- k
jumping champion.
7 [0 R/ u+ v0 A9 X+ n( ^; kk-tuples conjecture, prime. : m( l; }! Q  a! f/ m. C7 b
knots, prime and composite. 3 U3 R, i  Y3 I1 m# _
Landau, Edmund (1877–1938).
* y% o* @. f, `6 r$ {4 vleft-truncatable prime. $ c' s3 r$ @2 h( X3 \5 b. t
Legendre, A. M. (1752–1833).
3 ~: W0 {8 R4 Y; A% v1 y4 R; KLehmer, Derrick Norman (1867–1938).
. Q; Q9 h# P0 \, a/ ~: _) gLehmer, Derrick Henry (1905–1991).
6 ^5 n( b( d! d. [1 c2 ]Linnik’s constant. % g3 e0 {+ @9 g/ z
Liouville, Joseph (1809–1882).
4 f, f. F+ q7 u* D" fLittlewood’s theorem.
" ^- k* ~6 g2 [* k7 |2 y( Hthe prime numbers race. $ \+ `8 ^, B0 [: @1 g
Lucas, édouard (1842–1891). " L. j  i- K. V1 G
the Lucas sequence.
* i2 r# \7 y% \3 O( p  `+ g  Jprimality testing.
9 @9 J9 G4 L6 ]' Y+ a$ g7 [Lucas’s game of calculation.
! W3 M2 K6 o6 r5 v! {9 H5 Nthe Lucas-Lehmer test.
; [) X6 \7 u# t- f( T; o; f: Nlucky numbers.
6 B" n, _% Z( m6 g1 lthe number of lucky numbers and primes. 2 x$ R9 u' f- i! S$ O
“random” primes. $ D4 w' I: W; v
magic squares.
  R7 s, P$ g5 `0 RMatijasevic and Hilbert’s 10th problem. $ U. k! K) d/ A, T) i
Mersenne numbers and Mersenne primes.
* }, S# F6 C* V/ oMersenne numbers. : _+ \; q; [2 f: `8 O
hunting for Mersenne primes. ) t7 w' W0 ?6 ^) N/ u  a6 w
the coming of electronic computers. 5 u7 I/ G$ W) u5 ^5 Q( `
Mersenne prime conjectures. + k" a2 C1 _. e
the New Mersenne conjecture.
* e8 s* B  B1 Bhow many Mersenne primes?
5 H9 N* v: F4 j0 j9 X; @% aEberhart’s conjecture. 7 C0 b$ P5 E( q; Q; |5 S
factors of Mersenne numbers.
1 @# c/ q7 h- Y& e" O) n! JLucas-Lehmer test for Mersenne primes.
! `' K- D9 i: o+ UMertens constant. 1 p, X5 R" F' F* `5 a+ {* `* c
Mertens theorem.
+ M+ @" U6 g: s) v7 w+ v9 RMills’ theorem. 9 [! \# u# C, B+ I
Wright’s theorem. , h: N% W0 @$ t' h, `
mixed bag. 6 e' m+ J; y/ G5 a/ _
multiplication, fast.
  K3 U% R- n- Z4 x1 c) lNiven numbers. 7 s" z, F. s& M8 _" |
odd numbers as p + 2a<sup>2</sup>.
2 m0 V2 v2 S2 c/ s9 `' y* W/ rOpperman’s conjecture.
! _, o$ Z* M: a2 {/ tpalindromic primes.
* {  X: }6 u8 B# I/ _( O* e, Upandigital primes.
% u4 f( l* ^2 E; L, N4 ~Pascal’s ** and the binomial coefficients.
  ~) N& E' c! F" |: aPascal’s ** and Sierpinski’s gasket. # a5 r% i) W1 Z" {: E
Pascal ** curiosities.   {  b0 g: b( T/ `6 n. T5 ~% m6 R! ~
patents on prime numbers. * M) Q) t$ K6 o4 h# j3 k
Pépin’s test for Fermat numbers. . K5 w$ I: {: U9 J' v' r
perfect numbers. % |9 \3 ~4 Q2 |7 @. f
odd perfect numbers.
: Z, ~& |. U# q# K! {6 fperfect, multiply.
/ c% l7 I& @% q1 |4 I1 ]; jpermutable primes.
2 [3 w  f+ s  p% z* }( Jπ, primes in the decimal expansion of.   a5 A7 O1 C) t9 b$ b1 o3 T9 P
Pocklington’s theorem. / A' n! d& ?# M, H7 B6 S
Polignac’s conjectures.   O$ |' L9 w3 S
Polignac or obstinate numbers.
0 ^2 e; ^! N4 c5 \powerful numbers. 8 I$ p" P/ S/ G, P+ e5 ?/ r7 q: P
primality testing.
! ^9 Z' z9 n0 c6 A9 m9 T! jprobabilistic methods.
4 l/ [; n6 f7 ]/ iprime number graph. 9 T/ q$ B; ~2 B" H8 o
prime number theorem and the prime counting function. $ ]4 |3 Z+ r, Z" D: |
history.
! Q  b3 y: s+ c# Velementary proof.   @( N" l- u' O7 I) s2 \: R
record calculations. 7 Z$ _& ^) i& u- x
estimating p(n). ! }. e2 X0 _! q) r2 T. I
calculating p(n). ) _) @2 j; F# l4 F. p8 b
a curiosity. 3 s2 r5 h/ C" X) ~
prime pretender. ! w7 r$ M9 d. Q* K" C
primitive prime factor.
, o! b  ~1 X/ Yprimitive roots.
* f0 m! N* S- sArtin’s conjecture.
7 z, U. Z& l& d* W5 ?$ z% X* Da curiosity. 4 l& z; E/ @8 q
primordial.
& Y$ y# j, g4 ~! V4 O" Bprimorial primes.
8 n( c# k3 o' k9 @. @% k; z* J7 YProth’s theorem. ' {! f3 ]0 U( |
pseudoperfect numbers. 4 ]4 z" i# `% W
pseudoprimes. 5 p* P. ]+ ~1 q/ E
bases and pseudoprimes. " a+ J2 o2 d) @- w/ E
pseudoprimes, strong. ( n5 I- C, V2 o$ z9 L! z
public key encryption. ; c4 J8 l. b! p0 z; `) P, l: F) Q
pyramid, prime.
* R- U. r# H: |# RPythagorean **s, prime. ; S$ G  G- Y* o
quadratic residues. 8 b& B1 C+ y) `- u
residual curiosities. 3 O7 x: ^7 Q' R% ?  a/ M+ i
polynomial congruences. 3 v0 X4 y2 M, s# ]" ^+ ]1 t
quadratic reciprocity, law of.
; k  i3 L: N4 v3 Q/ w: _Euler’s criterion.
$ L8 d/ k- Y! ERamanujan, Srinivasa (1887–1920). - r' i, |, ?8 \) O5 q8 R) \% @0 t) k
highly composite numbers.
9 a, Q+ }4 `# ]" Z3 @randomness, of primes.
. t) D7 u" ^. j; h, Q1 N+ nVon Sternach and a prime random walk. ! ^  _; T, n# \7 p
record primes.
$ S, A- D% T- hsome records. ! Z- e( l( C8 M3 u; w
repunits, prime. - R3 |) I/ \5 Q% Z! p
Rhonda numbers.
7 k2 i/ ~! c( U' h) c, k% \Riemann hypothesis. : z1 k/ U) M4 u8 R$ T
the Farey sequence and the Riemann hypothesis.   h" g, z- p# Q, n& h
the Riemann hypothesis and σ(n), the sum of divisors function.
# e+ \. ?8 n9 N  F( ]squarefree and blue and red numbers. 1 c3 C9 l# |' B$ @
the Mertens conjecture. 1 Z2 ^- F" g4 C. [! X9 g; s$ w
Riemann hypothesis curiosities.
# T- V+ E1 \) ?' ?$ fRiesel number. ) |0 q5 b+ g/ z1 n" I# n: N
right-truncatable prime. , p; q( C  F2 u2 k" T$ Y
RSA algorithm.
2 R* L) m' Q+ @Martin Gardner’s challenge. ' X8 q9 Z0 K# W7 M- q/ g6 w
RSA Factoring Challenge, the New. / G2 c/ i, i+ S0 _
Ruth-Aaron numbers.
" }* a! f* M; g. O2 b. tScherk’s conjecture.
3 ?$ ]) A+ x. \semi-primes. , i* N+ o2 W1 F- p* b$ F. X8 `
**y primes. 3 i. Z: C0 p3 j" d
Shank’s conjecture. 7 ]& b! h/ T+ h# H" N2 K- P
Siamese primes. 2 A8 d* K/ ?8 u9 J
Sierpinski numbers. + B# g0 |- R+ S8 b7 O
Sierpinski strings.
  z% W; d! ~" |2 |* r  f7 B7 H4 x; hSierpinski’s quadratic. 2 o" Q8 J/ s1 O4 o
Sierpinski’s φ(n) conjecture. 7 u* b! j, a1 f7 ?7 Z
Sloane’s On-Line Encyclopedia of Integer Sequences.
1 w* B" S& `5 ^( R9 |# ySmith numbers. ! F4 W1 Z+ S4 P8 q
Smith brothers.
! c" B' X# w( D7 V9 E. Ksmooth numbers. 2 e3 n" F8 F8 h" |
Sophie Germain primes.
: a7 _3 t8 Y, r- \1 Rsafe primes.
5 H; ^  g3 Q% x7 isquarefree numbers. / \6 B8 t7 f6 N7 N3 v
Stern prime. 0 I1 H/ @  ?( g$ S
strong law of small numbers.
0 O/ e" `3 Y& v; T, Striangular numbers.
: K5 ~, G  ~( F# x+ _! Q" Etrivia.
1 O) o& m2 {2 t6 O5 Htwin primes.
4 \$ w3 x/ I: N, }  D7 d9 Utwin curiosities.
) O! l: w' Z8 Q/ z0 n3 k+ iUlam spiral. # b3 j0 ^% E2 D
unitary divisors.
( @* |2 H7 _$ d# K( T8 |' S: ?unitary perfect. , ?/ k) B* L$ r* p% K" z
untouchable numbers. + q3 n' ]2 J, R; H8 U6 W* E4 K
weird numbers.
9 N+ P4 p% B( [6 S" O! LWieferich primes. - j+ V* L  G# l0 Q  E
Wilson’s theorem. / U, H- |+ F2 L5 r; N5 v; D. S/ x
twin primes.
. X6 o$ A1 d& }& g# T  d$ eWilson primes. - p( U6 U+ h6 c/ Z" u
Wolstenholme’s numbers, and theorems. / h( c8 M# ?9 b( p+ D* z
more factors of Wolstenholme numbers. 2 P0 c  f! Y) {! J7 V5 |2 k
Woodall primes. 0 W" x4 O  f9 ~+ F+ @
zeta mysteries: the quantum connection.
5 z0 n: j- F) \4 ?
4 K) r# H" L. }5 d7 ^' |- ~& @
附件: 素数.rar (1.44 MB, 下载次数: 12)
作者: risiketu    时间: 2010-4-27 18:48
解压密码是什么啊?在哪里能找到解压密码呢?
作者: risiketu    时间: 2010-4-27 18:48
不好意思  我找到了解压密码了  谢谢大家
作者: mightyrock    时间: 2010-5-8 20:12
楼主强大,支持楼主,不过我就不下了吧~~~~~~~~~~~~
作者: clanswer    时间: 2010-5-8 20:18
回复 4# mightyrock
$ W' b7 l5 D& I  \1 F% P/ ~1 q, ?9 O& {2 J

% G4 g$ C" k9 U" D. h3 ?. n8 S    多谢支持
作者: 风痕    时间: 2010-5-14 22:39
似乎看不懂………………………………………………
作者: clanswer    时间: 2010-5-14 22:44
回复 6# 风痕
. p! c! A; L+ I' D5 b  O0 }
$ a+ r" \; O' U/ G0 F2 k$ T' u/ `! Z
; Q) s! t* q% t/ b( T    哦?是吗?呵呵




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5