数学建模社区-数学中国

标题: 拓扑学简介一(科学松鼠会) [打印本页]

作者: wz3118103    时间: 2010-5-16 08:13
标题: 拓扑学简介一(科学松鼠会)
拓扑学是现代数学的一个重要分支,同时是渗透到整个现代数学的思想方法。“拓扑”一词是音译自德文 topologie,最初由高斯的学生李斯亭引入 (1848年),用来表示一个新的研究方向,“位置的几何”。中国第一个拓扑学家是江泽涵,他早年在哈佛大学师从数学大师莫尔斯,学成后为中国带来了这个新学科(1931年)。
$ ]$ N; v- q. r  M$ c拓扑学经常被描述成 “橡皮泥的几何”,就是说它研究物体在连续变形下不变的性质。比如,所有多边形和圆周在拓扑意义下是一样的,因为多边形可以通过连续变形变成圆周,右边这个图上,一个茶杯可以连续地变为一个实心环,在拓扑学家眼里,它们是同一个对象。而圆周和线段在拓扑意义下就不一样,因为把圆周变成线段总会断裂(不连续)。为什么要研究这种性质呢?这就要追溯到几百年以前先贤们的遐想了。好在拓扑学比微积分还是新得多,用不着 “言必称希腊”,只要从莱布尼兹开始就行。
; k0 |% l, q) ^. P( @7 c4 U% j" C6 g
2 W5 y2 }& h: _0 t! R$ s2 ^/ O4 p) n/ i& |+ z" [$ C; @; A
. S9 k# G' z+ f" s
莱布尼兹作为微积分的主要奠基者之一,对抽象符号有特殊的偏好。经过他深思熟虑以后的微积分符号系统,比如微商符号 dy/dx,不久就把牛顿的符号系统比下去了。在1679年的时候,莱布尼兹突发奇想,尝试用抽象符号代表物体的几何性质,用以将几何性质代数化,通过符号的代数运算,由已有的几何性质产生新的几何性质。他不满意笛卡尔的坐标系方法,认为有些几何性质是跟几何体的大小无关的,从而不能直接在坐标系中予以体现。可能是由于这个想法太超前了,在他自己的脑子里也还只是混沌一片,而当年听到他这个想法的很多人,比如惠更斯,干脆就不予理睬。
4 {5 d6 h- h$ u3 s1 S' r mobius1-300x191-thumb.jpg
8 B& M! ^" f. {莱布尼兹在三百多年前想要建立的,是现在称为“代数拓扑”的学问,中间经过欧拉,柯西,高斯,李斯亭,莫比乌斯,克莱因,特别是黎曼和贝迪的思考和尝试,终于在19,20世纪之交,由法国天才数学家庞卡莱悟到了。在这些先驱中,高斯名气最大,被称为数学王子;大家可能不太熟悉黎曼,其实他同高斯在数学史上的地位是相当的,他在19世纪中叶的很多想法直到现在还有着巨大的影响;莫比乌斯,他在数学上有很多贡献,不过他为世人所知还多半是因为用他的名字命名的奇怪曲面:莫比乌斯带。左边这个图就是莫比乌斯带,它的重要特性是,虽然在每个局部都可以说正面反面,但整体上不能分隔成正面和反面。这种曲面叫做 “单侧曲面”。在这样的曲面上散步一定很别扭,哈哈。
0 w; x- Z- g; Y+ ]: w
$ w* ?# u" d' S这次来谈谈拓扑学中有代表性的一个课题, 扭结分类问题。所谓扭结,顾名思义就是一根绳子首尾相接,它可能打了结。更一般的,可以是几根绳子,除了自身打结以外,还互相打结。对具体的一个扭结,也许可以通过做实验的办法判断它是否打结,但是数学家希望找一个普适的,定量的办法。比如说,任意画一个扭结(它实际上是一个空间扭结的平面投影),比如这个有点复杂的,怎样不动手做实验就能判断它到底有没有打结?/ H! w8 E6 M, u+ q; Y+ a

% F4 g5 z2 K4 X" O+ e
1 D! h  l; P, x$ c2 i; N这个问题后来证实是非常复杂的问题。在有了计算机以后,才能找到一种时间代价很高的算法让计算机帮助我们判断一个扭结投影到底有没有打结。直到 2006 年,才找到一种真正快速的计算机算法来判断这件事。 , p8 }/ b* x0 z: ^) X  G
扭结分类的问题比判断是否打结更困难。比如,以下两个扭结都打了结,它们是否本质上是同一种结?

figure81-thumb.jpg


6 ?8 j& w# Q- C* w; X2 Z( a6 W所谓 “分类”, 就是要找一个(可计算的)判据,使得当两个扭结满足这个判据时就是同一种结;当它们不满足这个判据时就不是同一种结。到现在为止,也还只能找到一些非常复杂的判据,同样要借助计算机才能大致判断两个扭结是否本质上为同一种结。# B1 e' D1 B9 ^% Z  f2 e- H
扭结理论有一段很有趣的早期历史。1867 年,著名物理学家开尔文勋爵,就是那个号称物理学已经接近终结,只剩 “两朵乌云”的开尔文,突然产生了关于化学元素表的新看法(那时候还没有发现原子,所以化学元素表还是一个谜)。开尔文认为,不同的化学元素其实是 “以太”的涡旋在空间中的扭结形态。“以太”是19 世纪的物理学家们发明的概念,它被想象成充满整个空间,是电磁波传播的载体(或媒质)。开尔文是很严肃的物理学家,当然不能凭空想象,实际上他提出了几个即使从现在的观点看来也很合理的证据:1 i( P. ~' g, Y' ^
(1)元素很稳定,这可以用扭结的拓扑性质来解释,微小的形变不改变扭结的 “扭法”。
" l5 b+ s. j8 n$ Z9 }(2)元素很多样,这可以用扭结的多样性来解释,不同的 “打结方式” 实在太多了。: ?  V3 J7 X, m' n* u& a
(3)不同的元素发出不同的光谱,这可以用 “以太扭结” 的各种 “振动方式” 来解释。
+ y. h1 y; I- g4 l% k有时候我们不得不佩服一些大师,他们虽然偶尔有点信口开河,不过极富原创力想象力。开尔文这个想法可以算是 “弦论” 的原生态。虽然后来化学周期表更好地被理解为原子内部结构,但开尔文列举的这几个证据都能在新兴的弦论中依稀找到一点影子。1 s7 Z1 O  B# Y1 g' \" M; z
请原谅我不能在这里具体给出任何判断两个扭结不同的方法。任何这样一个方法,都需要很多图解和文字说明。有兴趣的网友可以读姜伯驹的《绳圈的数学》或者英文书 《An introduction to knot theory》, 作者 Lickorish, 属于系列 GTM (graduate texts in mathematics) 175. 再贴几个扭结:

knot02-thumb.gif

knot001150x150-thumb.jpg


5 L0 Y4 X+ q  o. Q+ }. x
* u, j# x1 h4 o2 Z: v6 ?# y然后是一个问题:下面三个扭结中,哪两个本质上是同一种结?

unknot01150x150-thumb.jpg

figure81.jpg (12.88 KB, 下载次数: 365)

figure81.jpg

link150x150.jpg (21.8 KB, 下载次数: 402)

link150x150.jpg


作者: 向日葵Riemann    时间: 2010-6-13 14:49
我在初中时偶尔在杂志上看到关于莫比乌斯带的介绍,然后自己试了一下,觉得很神奇,当时还不知道这是关于拓扑的
作者: gssdzc    时间: 2010-6-14 21:56
非常感谢分享。。。。
作者: zylhaha999    时间: 2010-8-17 21:06
拓扑学很神奇也很好玩!
作者: mvmmvmmvm    时间: 2010-8-18 16:41
看着 晕头啊
作者: 386453179    时间: 2010-8-18 19:46
。。。强大啊!!!!!!!!!!!!!!!!!!!!!!!!!!!!
作者: 暖阳    时间: 2010-11-28 01:29
好东西~赞一下
作者: fif1fds00712    时间: 2011-1-22 01:59
呵呵,来逛逛!!!!!
作者: 20080003018    时间: 2011-2-21 18:37
拓扑学是一门很好的学科,只不过刚入门的时候有些痛苦,它教我们的那种拓扑思想,一开始简直难以适应。
" M( U5 o; V% m5 A
作者: MONKEY123    时间: 2011-4-28 21:43
总觉得很难在生活中应用啊. p9 R) Q9 E+ Q) h" S9 \% J# J

作者: 黑q手    时间: 2011-10-13 13:08
看看.............' D7 ?# A( @  \# i
, n7 N" c5 H7 ^0 t% ~! Y

$ k, }0 [& e, O3 ]& y
4 e* J% j; [+ M) P/ k2 B
1 F: l8 _3 N  `# v2 O/ p4 L
* B, A2 N1 l8 }/ {' Q5 `' k6 x- A4 i( x6 X/ k0 H
' L6 Q( I" ~/ N1 ?) S# ~
4 h0 n2 L' ?1 L. E1 m
( B% ~8 r5 u9 a' D( O* H, K6 f, f

# J( \( J! ]+ f3 e% d
2 }% _4 z# j5 B; H! q5 n, N" U3 {/ a" y! e7 Q. {# r% Q
51koo.net黑客论坛 soyangsyl.com搜羊娱乐新闻网
作者: 幸福a味道    时间: 2011-10-13 19:58
很好很好很号
作者: shanminjie    时间: 2011-11-24 21:41

作者: shanminjie    时间: 2011-11-24 21:41
那些前辈们都太牛了...
作者: 竹下夜月    时间: 2011-12-3 12:15
可能以后要学,希望学校不要把这么好的学科给我们坑掉了
作者: ξτη    时间: 2012-1-10 09:06

作者: lilianjie1    时间: 2012-1-10 13:03
学习。。。。最新有本美国人编的拓扑学应用(黄皮),在DNA,数字地理,理解空间宇宙都有应用
作者: CHENTIANMIN7    时间: 2012-3-30 22:47
非常好,希望以后能多看一些资料。
" w. G+ p  B- a; V" F7 D: k
作者: zxq_bellona    时间: 2012-4-14 15:11
突然发现。。我们家小狗玩的球原来也是跟拓扑有关!!好惊奇!
作者: Unrvalled_VX    时间: 2012-4-16 22:34
有意思+ O) @! M9 K& J& J, K

作者: 豪仁大侠    时间: 2012-5-12 23:34
拓扑学真的很神奇,我想把拓扑用在我们现在完成的论文里
作者: magic2728    时间: 2012-6-10 13:22
好东西!!!
作者: hbdkfk2    时间: 2012-8-19 09:28
嗯,要好好学习了!!!!!!!!!!
作者: 布尔巴基    时间: 2014-1-23 17:09
赞一个,大爱拓扑学
作者: 宇仲    时间: 2015-1-16 19:44
楼主加油,辛苦了!
) u$ z, s: x& k, @# ?9 Y. ?5 B
作者: 郑可心    时间: 2015-2-1 18:04
; h& j1 x1 @/ L" U' g

+ c3 q: X4 v: |2 _7 d5 h: [9 e1 E& _9 u) ^) Q8 M# F: J
学数应的觉得写得还好了
+ b, K3 M. @- [# r; R
作者: 刘德凯    时间: 2015-4-1 16:38
本学期开始学习拓扑学~谢谢楼主分享
8 O6 m* X' [' N+ z
作者: 1300611016    时间: 2015-8-20 08:49
哈哈,没了* `1 F( d. p4 n

作者: 非常数123    时间: 2016-7-24 12:01
这个 说得很到位啊 不错,,,* G7 I1 \: y  P% Q' W  j

作者: 非常数123    时间: 2016-7-24 12:01
这个 说得很到位啊 不错,,,
& I2 k: s! C3 c9 `" b7 V




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5