- 在线时间
- 1288 小时
- 最后登录
- 2025-11-10
- 注册时间
- 2022-2-27
- 听众数
- 34
- 收听数
- 0
- 能力
- 90 分
- 体力
- 173510 点
- 威望
- 9 点
- 阅读权限
- 255
- 积分
- 55189
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1824
- 主题
- 1197
- 精华
- 33
- 分享
- 0
- 好友
- 35
TA的每日心情 | 奋斗 2025-9-17 16:27 |
|---|
签到天数: 624 天 [LV.9]以坛为家II 网络挑战赛参赛者 - 自我介绍
- 我是普大帝,拼搏奋进,一往无前。
 |
你好!我是陪你一起进阶人生的普大帝!愿你成才!祝你成长!* g, i6 h j5 V: R# e
清华大学出版社 卢开澄 编著,以下为目录内容$ x& ~6 u& S/ k5 n) L: [
" I! i( Q+ v7 v9 e0 V
目 录
% {; r# m3 Z" R. \# \' s5 j* @第 1 章 引论
7 s) k8 n. D$ J1 P% ?2 s1 S1.1 引言
, Y# s4 h3 {/ F& _! C- s/ `1.2 问题的提出
7 b: S3 |5 M, k1.3 标准形式与矩阵表示法
4 a' w% C$ v. y( m1.4 几何解释 0 O+ C T8 Z+ \' A) C+ N
习题一 11
( p5 a- J5 C! H9 ^6 z C( d第 2 章 单纯形法
' X+ c% D* g1 F. ^/ o$ g2.1 & 凸集
& ?5 G" x3 g8 E- e% j8 ` u9 T2.1.1 凸集概念
% Q/ u; B( D0 `) @+ F/ R2.1.2 可行解域与极方向概念
/ `* y8 s% y9 h% j2.2 凸多面体 9 s& v% U) j/ C9 l5 z
2.3 & 松弛变量
' ^' P& H' S; \4 i% v6 u4 y q' h2.3.1 松弛变量概念
6 k6 u! W) w2 D7 y: j' M% R2.3.2 松弛变量的几何意义
1 c5 m7 }. I5 I( T2.4 & 单纯形法的理论基础 2 K z/ r, g" w5 j7 [9 S2 Y
2.4.1 极值点的特性
0 g: b# Q9 d( F( z2.4.2 矩阵求逆
8 ?# E. N' E: l2.4.3 可行解域无界的情况 - m7 T* u5 k2 p
2.4.4 退化型举例
1 h6 x! h) w# S2 v* s3 t. r2.5 & 单纯形法基础
3 [: B: p* ~& g) C# |2.5.1 基本公式
$ Q0 ~2 v, x b2.5.2 退出基的确定与进入基的选择9 S& U+ G- q! j G/ a- ~' @2 x
2.5.3 例 / e4 I3 x2 v9 {! p3 y% E
2.6 & 单纯形法( 续)
- H& R! o$ M' v8 W% p1 |4 _2.6.1 基本定理
' ^5 @3 M. ]; Y8 l2.6.2 退化型概念
6 [+ p; `7 i! [2 B1 ?6 O1 x2.6.3 单纯形法步骤
/ J. h5 q9 O w! r2 y0 l @2.6.4 举例 4 C7 e. x1 ~$ A2 Q) L
2.7 单纯形表格
4 a. r: H( J9 m, ^3 b+ T习题二 48 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. i9 a4 n% z. i6 P. X
第 3 章 改善的单纯形法 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ A. B( a$ ]" x; r3 t ?3.1 & 数学准备 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% k- J7 {. d1 y e2 [& P Z7 e
6 p2 ^+ u6 A a8 W3.1.1 改善之一⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& C+ F$ F9 p( u( `
3.1.2 改善之二: 矩阵求逆 50 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 i5 u) r8 ^7 Z" H" r1 f* J
3.2 & 改善的单纯形法 52 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, A# l q+ K* h$ N) w
3.2.1 改善单纯形法步骤 52 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯' O% D. {% z6 U0 S- S+ a" v
3.2.2 举例 53 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. Q6 Q3 v/ S$ T* G1 y6 Z
3.3 & 改善的单纯形法表格及其分析 58 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ k2 `2 t2 I+ ?9 B. C
3.3.1 改善的单纯形法表格 58 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+ f& G; @2 H% ?' Q
3.3.2 改善单纯形法的复杂性分析 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 S; L; _1 o: T* Q9 p
3.4 & 变量有上下界约束的问题 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) a. P) N. }' P+ c& }+ v
3.4.1 下界不为零的情况 62 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 D! m4 ~4 u% b7 q) Y; V' R: Y3.4.2 有上界的情况 63 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 _( z. R ~" ]+ e- v, P3.5 & 分解原理 68 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
: c, t0 ?( ^/ t8 ?7 ~3.5.1 问题的提出 68 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) W5 t7 `& ]! Z: {1 k, ~3.5.2 分解算法 69 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 }0 H5 d% D3 k. p2 h" P3.5.3 说明举例 71 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 B4 Z1 l0 C7 j9 C3.6 & 无界域问题的分解算法 80 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 n# h* _% X* |# J& E3.6.1 分解原理 80 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ z! ]4 Z& O0 b v7 l. O2 ^
3.6.2 说明举例 81 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 }5 q! T+ d w3 D. F
习题三 86 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 v+ C4 C" O+ }9 C3 h4 l3 D' u* S
第 4 章 单纯形法的若干补充与灵敏度分析 89 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* J2 Z/ a' [0 Y: x4.1 二阶段法 89 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 z8 P5 h& z; K$ ]# C' V* R3 G4.2 大 M 法 98 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 ~+ s& G/ t# P0 ]& d
4.3 & 退化情形 103 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) T; }5 b" }: Z$ X/ N
4.3.1 退化形问题 103 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 v6 v: e$ K+ k4.3.2 出现循环举例 104 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 G/ p' h3 L- k h0 ]0 ^* x4.4 & 防止循环 106 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% q: W( E2 C' p& n4.4.1 退出基不唯一时的选择办法 106 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; l4 @$ `1 T f: {2 G$ n: V# t/ m4.4.2 首正向量概念 107 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 n! @ ?# G% y, ?; \5 b T4.4.3 不出现循环的证明 108 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 Z, M- q1 i4 G1 b% w1 z4.5 & 灵敏度分析 109 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 g& B6 ~4 Z* R w; g) p! n: m4.5.1 C 有变化 110 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯! ?( z+ V' }4 \. s+ S5 E
4.5.2 右端项改变 112 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
# ^3 Z) b* s4 ^, z# i/ ^4.5.3 a ij 改变 112 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 O0 r! j2 M6 W1 D4.5.4 A 的列向量改变 114 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* t/ c) _5 s8 O* f4.5.5 A 的行向量改变 115 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ g, ?* D; o5 B! a$ F3 I- k% F
4.5.6 增加新变量 117 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 V8 a) V) d n1 m7 u* M
4.5.7 增加新约束条件 118 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; N5 M: b& G" M* M5 \4.5.8 应用举例 120 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 c. I0 }( y5 M0 |- i( H· Ⅲ ·! X0 H7 s+ ?" I# S+ g# C
4.5.9 参数规划 121 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; p6 i/ `$ \8 N4 A! ?习题四 123 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯! E. ~4 z5 A$ [+ m/ Q
第 5 章 对偶原理与对偶单纯形法 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) o4 L* ~; A/ S5.1 & 对偶问题 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* X: R' |* D: u: D0 S8 C5.1.1 对偶问题定义 127 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ a. r+ j* ? ?; w: g5.1.2 对偶问题的意义 128 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* L! F9 B4 l2 i: E& H
5.1.3 互为对偶 129 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 Q7 f) I: z3 f4 w6 M5.1.4 Ax= b 的情形 130 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( `( z7 z V$ s3 `& D8 e$ t
5.1.5 其他类型 131 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 q* Z1 r9 a( v( Y7 `' Y2 A
5.2 & 对偶性质 132 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 C" b! t& w9 R0 {9 H+ y3 f5.2.1 弱对偶性质 132 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 `. T ]( g2 V( e
5.2.2 强对偶定理 133 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
" y8 [; R) K$ E, v5.2.3 min 问题的对偶解法 134 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 E$ y t5 p* |
5.3 影子价格 139 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, G, B+ [. F! `; _! n& \6 c
5.4 & 对偶单纯形法 140 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 G1 o, W: ~! A7 S$ u6 N* f% |
5.4.1 基本公式 140 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8 ]5 [/ b: N+ a j5.4.2 对偶单纯形法 142 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
" {6 \$ `; s( V m; n5.4.3 举例 142 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 b! i1 L8 H, ~/ Y, x5 P& L. X5.5 & 主偶单纯形法 146 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
" ]- _( L* F, ~' L5 w7 M2 v0 n0 _5.5.1 问题的引入 146 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
! F9 ^: A8 Q3 ~! g" W- O+ f5.5.2 主偶单纯形法之一 147 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) D0 f" y6 |- u! v8 I0 Z# i
5.5.3 主偶单纯形法之二 148 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 ?$ b0 N& j/ W
习题五 150 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, b" V1 c: P6 X r7 o3 l
第 6 章 运输问题及其他 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ I7 d- p9 k. V c2 l
6.1 & 运输问题的数学模型 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 ?4 A- N3 W! B5 I
6.1.1 问题的提出 152 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6 d2 f7 L- v1 o; P/ d7 h: P6.1.2 运输问题的特殊性 153 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 t' ~# X$ l2 A
6.2 矩阵 A 的性质 154 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ Z" E8 p9 [ O F6 h6 M: e6 c6.3 & 运输问题的求解过程 155 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 o7 d" R! l! {
6.3.1 求初始可行解的西北角法 155 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 q- a1 Z+ H8 S# x
6.3.2 最小元素法 157 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& o" h+ F8 I, C5 K6.3.3 图上作业法 158 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& ^# F+ [6 q3 d. i% ^; R2 z6.4 c i - z i 的计算, 进入基的确定
/ I" U) f# m$ w. p% C159 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 U+ G5 @5 M& q6 ^+ s1 y h
6.5 退出基的确定 160 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 F' n3 u" {. g4 J# W1 p6.6 举例 162 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
" Z0 N6 u8 }2 H. s2 H, j6.7 & 任务安排问题 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 w4 B7 S& \9 F
6.7.1 任务安排与运输问题 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# ]" U: C' C& D' p/ c! c6 x
· Ⅳ ·1 K$ k9 q2 b- N; L
6.7.2 求解举例 168 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 k% ^* i R4 ~3 J0 C$ ]" ^8 b; n
6.8 & 任务安排的匈牙利算法 171 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: ^' j' w! W) A* J2 c/ r% ]# p8 v
6.8.1 代价矩阵 171 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 u$ `* i6 `( @5 I' r& H
6.8.2 科涅格(Konig)定理 172 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯! m2 l+ V8 G2 [# W6 K$ L, C; z
6.8.3 标志数法 173 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 [ m! X! [) @+ h" j$ Q6.8.4 匈牙利算法 176 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯- |5 R% Z" c p: A+ ]
6.8.5 匹配算法 179 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 C" L3 O4 v- x1 j6.9 任务安排的分支定界法 180 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: M: ` M8 U+ N, J9 Q" L
6.10 一般的任务安排问题 182 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 u8 \( X! P/ F7 u, L0 s
6.11 \ 运输网络 185 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* x0 c) H' V* } o' s* |
6.11.1 网络流 185 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 X( I. w9 a8 ]! M6.11.2 割切 186 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( t4 g* e$ ~; a4 G
6.11.3 福德-福克逊( Ford-Fulkerson)定理 188 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 C; h) ?$ A2 U+ G# O; p
6.11.4 标号法 189 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 A1 r! n) C& j- U* J+ n. y6.11.5 埃德蒙斯-卡普( Edmonds-Karp) 修正算法 191 ⋯⋯⋯⋯⋯⋯⋯⋯⋯2 U: M- V+ f! ~0 U" g, q. y9 E
6.11.6 狄尼(Dinic) 算法 192 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* Q% j$ @3 \# b- ^习题六 194 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯# N' J2 p' {/ k$ u
第 7 章 哈奇扬(Хачиян) 算法与卡玛卡(Karmarkar) 算法 196 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; F* }' J9 |- e& V
7.1 克里(Klee)与明特( Minty)举例 196 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; V* [) f# G: q- I( `7.2 & 哈奇扬算法 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 D+ \/ g: f5 ~& B3 [7.2.1 问题的转化 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ k7 E4 ]1 K, i- `
7.2.2 哈奇扬算法步骤 198 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 O f8 T' y& j m
7.2.35 M' d: m. X, f) c# T
*
7 W3 G$ }! o) r5 I算法的正确性证明的准备 202 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 e* j. L3 } V b
7.2.4
9 r% q1 ]4 z0 N( U3 e*3 X( A2 n' p0 w7 T( y
定理的证明 205 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
- u) G9 ^# t/ W4 F ~7.2.5; D5 K2 G$ ^1 B t! }
** z! |/ F. f$ S, V' S9 c
严格不等式组 208 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 ]/ c! A/ |+ _$ j8 F: z7.2.69 e, W: v, |8 x# k0 {, K/ ~# n4 j
*
& K/ I' o: A g' c p2 f复杂性分析 210 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
! |! e9 N4 r& _7 d7.3 & 卡玛卡算法与卡玛卡典型问题 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 l( N$ n7 O1 N2 U7 g/ j
7.3.1 卡玛卡标准型 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. v9 z1 u' O7 \1 C3 Y9 I$ a1 s
7.3.2 化为标准型的方法之一 212 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. J/ m( t( w5 d; D
7.3.3 化为标准型的方法之二 216 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯: |) ~" l" j! y6 L
7.3.4 T 0 变换
+ p: J5 g% F( a* }! s8 k; m+ }7 \! r, W218 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 v, {% _ O( r4 r7.3.5 卡玛卡算法步骤 219 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ K1 H6 _# a7 S% y( [7.3.6 卡玛卡算法的若干基本概念 226 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 r4 ?( q6 g4 ] w/ [7 r: k
7.3.7 T k 变换的若干性质
9 G8 f; Z' Q s. c& ~% A228 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& H, @8 Z; w4 [7 a4 h* [
7.3.8 势函数及卡玛卡算法复杂性 233 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 w, c) J& i% r3 {: ?习题七 239 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ k+ M' q" e: [0 g, Z; \# Y
第 8 章 多目标规划 241 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 B6 S' I4 ^0 M: g! h/ e1 z
· Ⅴ ·* I8 ]' q: Z. W% I7 O/ M3 h
8.1 问题的提出 241 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; d3 e" K8 g v" Q; X; ~6 ]3 q
8.2 多目标规划的几何解释 244 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 @2 k% F3 r& I9 u( p! p' E6 @8.3 多目标规划的单纯形表格 249 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 F! ^: y1 p* M, V( B6 S6 K8.4 多目标规划的目标序列化方法 253 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* ?' E$ X% v1 u; B8 u8.5 多目标规划的灵敏度分析 258 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 s+ I1 N$ i" j" N( Q3 r
8.6 应用举例 269 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
! q9 w4 R5 q1 S+ R2 G, [习题八 272 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 o! w( g8 u% L
第 9 章 整数规划问题的 DFS 搜索法与分支定界法 277 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯& h: s' X* G. F ~5 D/ n% u! C7 c! @
9.1 问题的提出 277 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ \. O' [0 O1 t0 M; q6 X3 g9.2 整数规划的几何意义 281 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% m# F: r9 E! S9 t3 {1 d9.3 可用线性规划求解的整数规划问题 283 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. Z7 K# }: v9 |) A' R
9.4 & 0-1 规划和 DFS 搜索法 284 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 v/ h# u3 f! z" B( d
9.4.1 穷举法 284 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 ]2 f) N* u& g2 q9.4.2 DFS 搜索法 285 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯" L# N; T# i, A& F7 m
9.5 & 整数规划的 DFS 搜索法 288 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+ f5 Y; X7 x; r2 T$ k: ]+ r$ b
9.5.1 搜索策略 288 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 L& e; c- T6 [7 Z3 }# E
9.5.2 举例 291 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) a W) W6 [2 X5 r
9.6 & 替代约束 293 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; C. t8 Y: M. q4 U
9.6.1 吉阿福里昂(Geoffrion) 替代约束 293 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) C9 g) D" W+ O) h9.6.2 举例 295 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ }5 B7 w' e& N( C, J9.7 & 分支定界法介绍 301 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 F- ~* \0 w1 Q1 ^
9.7.1 对称型流动推销员问题 301 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6 p; R) w0 q, E9.7.2 非对称型流动推销员问题 302 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 C8 C; O* {& L# T* \8 \+ e9.7.3 最佳匹配问题 305 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
% E, L! L0 ~. q- O, r& R: ?9.8 整数规划问题的分支定界解法 306 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 Z5 C! H( n! w9 {4 c9.9 分支定界法在解混合规划上的应用 311 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
& c9 q J1 S, E! {2 ]9.10 估界方法 315 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯% ?/ T9 E& l3 [; G
习题九 321 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
5 H: g/ k5 _% l2 B5 N; Q+ E+ p第 10 章 整数规划的割平面法 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. E! E2 t/ c: R3 t. k
10.1 \ 割平面 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯* N6 Z0 I6 z4 H: G5 f! U1 ~4 ?
10.1.1 郭莫莱(Gomory)割平面方程 323 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 p7 ^/ M$ Y4 b6 O ~5 S10.1.2 例 324 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ B! H. y+ P3 u0 c% Y5 _$ c10.2 割平面的选择 329 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
3 M7 U9 o4 `( {* ^10.3 马丁(Martin)割平面法 331 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 k% ]2 C) L2 b0 o) x0 I4 N2 V
10.4 \ 全整数割平面法 336 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ p& m& K. U. `( E
10.4.1 全整数单纯形表格 336 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 `3 `/ R+ m) j/ P9 S7 A* S1 {10.4.2 举例 338 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ T: o6 P$ B0 @3 H
· Ⅵ ·, v$ [" B5 V) F+ I
10.4.3 确定 λ的策略 341 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
$ ^4 w8 g6 x5 P% x. @7 s9 o5 T10.5 混合规划的割平面法 344 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
; i& c5 c0 H. M0 c& v习题十 346 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 K5 X# A( W+ \. s! W. s第 11 章 奔德斯(Benders)分解算法与群的解法 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 e% Y& w" j) A* `1 Q
11.1 \ 混合规划的奔德斯分解算法 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯; c9 U/ y' s: X5 b! p* w
11.1.1 分解算法的原理 348 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 Q0 @* y& |/ z& S4 \% c1 @$ s' \: u11.1.2 奔德斯分解算法 349 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* j( S" m2 o* w+ P5 B+ k1 K11.1.3 算法举例 350 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
4 U6 a+ `! C- Q11.2 \ 群的解法 360 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
0 O* o2 U) A; T11.2.1 群的解法原理 360 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ E: @7 [+ w$ `
11.2.2 举例 361 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
: o7 I; ~3 j9 t" u$ @" ~11.3 \ 群的解法和最短路径问题 365 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
' _* a4 X! X- i8 i: ^( f. p11.3.1 图的构造 365 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 q' y! }) c. \6 r5 Y- U9 u
11.3.2 求最短路径的戴克斯特拉(Dijkstra)算法 368 ⋯⋯⋯⋯⋯⋯⋯⋯⋯
7 Z. `6 G; b- J& r2 |8 K11.4 背包问题 369 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯" {& j4 q6 J0 x) ?. [9 g
11.5 将整数规划归约为背包问题 371 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. W, b6 F# S; O* u ?8 H9 q
11.6 背包问题的网络解法 373 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯) s# x( q5 E" r& U7 T
11.7 背包问题的分支定界解法 374 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 f0 ] \. w, G0 P
11.8 \ 流动推销员问题的近似解法 380 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
, K) { h/ K6 b0 Q+ ^$ ?11.8.1 最近插入法 380 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 @7 g6 ~) D4 k5 p: D: l
11.8.2 最小增量法 381 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
( G( m* [1 V s3 \5 ?3 N11.8.3 回路改进法 385 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯, ^" x0 V6 v. v& k- J$ ?
习题十一 387 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
) h* N5 L4 M( @第 12 章 动态规划算法 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
. N' q( p' N* G7 n12.1 \ 最短路径问题 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
* M: C; X# U# Z$ V. Z12.1.1 穷举法 388 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 f1 i% K' ^) w! p: }
12.1.2 改进的算法 389 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 {( Z! o% [3 R w12.1.3 复杂性分析 390 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ y; z/ B% z. \4 e5 }12.2 \ 最佳原理 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯$ C' P% s& h8 [
12.2.1 最佳原理 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
9 v& v6 z! J* l6 D$ {; a12.2.2 最佳原理的应用举例 391 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
H3 w& z* {+ m, v+ \% [12.3 \ 流动推销员问题 394 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 m# f/ ]: w( F, T( |5 e; O. G12.3.1 动态规划解法 394 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 q1 O& V5 r$ g% c3 q12.3.2 复杂性分析 397 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
+ y6 h6 H( s+ c' {% J12.4 \ 任意两点间的最短距离 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
2 ~3 T+ p) i. d& b% r12.4.1 距离矩阵算法 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯/ o7 s+ g$ G6 d
12.4.2 动态规划算法 399 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 B0 G: w0 l& _ n. G
· Ⅶ ·, _4 q- ^, ]$ X& i5 U2 K
12.5 同顺序流水作业的任务安排 401 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
- A# @: W6 h! ^( h: I( h12.6 \ 整数规划的动态规划解法 403 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯0 _: R. o9 V: u) a6 k
12.6.1 多段判决公式 403 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 ?& Q" f9 \1 J4 x @. F( K
12.6.2 举例 404 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
/ y% ~. k# s# r; G8 @6 F& i2 k/ X12.7 背包问题的动态规划解法 408 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( d/ o8 d: c% i8 C9 ]0 ^
习题十二 412 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 d: V+ P; `3 |8 i1 p6 x
参考文献 413
3 E2 X$ A8 ]0 ]1 M+ X8 r# s2 M( _
, c( G: h0 a" S. C% Q% s8 ]
% k% i2 x) }' Q5 ~1 M8 c |
zan
|