[转帖]侃侃计算数学 (数值优化)
谈到数值优化,不能不提的是单纯形算法。这被誉为20世纪最受人欢迎的算法为人们带来巨大的经济效益。不过有趣的是,这个最好的算法在算法复杂度理论里面却解释不通,
因为它不是多项式算法。
数值优化以求解有约束或无约束条件下函数最值为目标。我想数值优化里面最
令人头疼的是如何判断你找到的不是极值而是最值。因为二者的区分
似乎只能从函数值上得到,其它的信息包括各种导数似乎都没有什么区别。但是,
实际中的很多问题都有大量的极值点,如果挨个寻找根本不可能。
对付这个问题,现在最有效的武器应该是随机算法包括遗传算法等等。但是,
其庞大的计算量有时也让人望而却步。
优化里面另外一个困难的问题是整数优化,凡是涉及的整数的问题总是令人头疼的
,因为限制太为严格。直到今天,人们连线性方程组的整数解都没有完全解决,
何况在此基础上考虑整数规划等等。
其它的诸如不可微优化、非线性规划等等发展到今天似乎很难有什么突破,也局限于在
理论上推导满足一些条件的算法,但实际中有几个问题能满足这些条件(我的愚见,未必正确)。
现在,与计算机组合优化密切相关的计算复杂度理论异军突起,新千年7个悬赏问题之一
就是与之相关的P是否等于NP.我想,结合图论组合优化计算机等学科,这一方面的发展是很有空间的。
页:
[1]