典型相关分析(Canonical correlation analysis)(二):原始变量与典型变量之间...
1 原始变量与典型变量之间的相关性(1)原始变量与典型变量之间的相关系数
https://img-blog.csdnimg.cn/20190428152435192.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70https://img-blog.csdnimg.cn/20190428152508207.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
(2)各组原始变量被典型变量所解释的方差
https://img-blog.csdnimg.cn/20190428152600620.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
2 典型相关系数的检验
在实际应用中,总体的协方差矩阵常常是未知的,类似于其他的统计分析方法,需 要从总体中抽出一个样本,根据样本对总体的协方差或相关系数矩阵进行估计,然后利 用估计得到的协方差或相关系数矩阵进行分析。由于估计中抽样误差的存在,所以估计 以后还需要进行有关的假设检验。
1.计算样本的协方差阵
https://img-blog.csdnimg.cn/20190428152739481.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
2.建立整体检验 & 统计量
https://img-blog.csdnimg.cn/20190428152806720.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
https://img-blog.csdnimg.cn/20190428152830464.png
3.部分总体典型相关系数为零的检验
https://img-blog.csdnimg.cn/20190428152914595.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
https://img-blog.csdnimg.cn/20190428152935496.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI5ODMxMTYz,size_16,color_FFFFFF,t_70
————————————————
版权声明:本文为CSDN博主「wamg潇潇」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_29831163/article/details/89639194
页:
[1]