雩风三日 发表于 2020-12-24 15:48

混沌模拟退火粒子群优化算法研究及应用

混沌模拟退火粒子群优化算法研究及应用

    针对粒子群优化算法容易陷入局部极值点、进化后期收敛速度慢、精度较差等缺点,提出混沌模拟退火粒子群优化(PSO)算法.引入混沌理论对粒子群优化算法的参数进行自适应调整,提高了算法的全局收敛性能;采用模拟退火(SA)算法,依据概率性的劣向转移,以一定概率接受劣解,使算法具有跳出局部最优而实现全局最优的能力.引入自适应温度衰变系数,使模拟退火算法能够根据当前环境自动调整搜索条件,从而提高算法的搜索效率.通过7个经典函数测试混沌模拟退火粒子群优化算法的性能,并将其应用于Job Shop调度问题.仿真实验结果表明,采用新算法有效地克服了停滞现象,增强了全局搜索能力,与遗传算法、粒子群优化算法相比寻优性能更佳.

关键词:混沌;job shop调度;粒子群优化算法;模拟退火算法

页: [1]
查看完整版本: 混沌模拟退火粒子群优化算法研究及应用