- 在线时间
- 130 小时
- 最后登录
- 2025-7-19
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15951 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 4995
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
混沌模拟退火粒子群优化算法研究及应用
/ `- B0 g$ g$ a' h% w( e+ o8 ~. l) E* H
针对粒子群优化算法容易陷入局部极值点、进化后期收敛速度慢、精度较差等缺点,提出混沌模拟退火粒子群优化(PSO)算法.引入混沌理论对粒子群优化算法的参数进行自适应调整,提高了算法的全局收敛性能;采用模拟退火(SA)算法,依据概率性的劣向转移,以一定概率接受劣解,使算法具有跳出局部最优而实现全局最优的能力.引入自适应温度衰变系数,使模拟退火算法能够根据当前环境自动调整搜索条件,从而提高算法的搜索效率.通过7个经典函数测试混沌模拟退火粒子群优化算法的性能,并将其应用于Job Shop调度问题.仿真实验结果表明,采用新算法有效地克服了停滞现象,增强了全局搜索能力,与遗传算法、粒子群优化算法相比寻优性能更佳.
+ v9 @9 I/ B2 h! T6 L# N P, R# s- k3 `9 G
关键词:混沌;job shop调度;粒子群优化算法;模拟退火算法
0 [- {( W# @; D' X
' C. z6 ?! x+ j$ A/ {9 i9 [0 I, T& }8 v |
zan
|