数学建模社区-数学中国

标题: Goldbach’s problem [打印本页]

作者: 数学1+1    时间: 2013-12-6 12:27
标题: Goldbach’s problem
Goldbach’s problem                    Su XiaoguangAbstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:[code]<SPAN style="FONT-FAMILY: Arial; COLOR: #333333; FONT-SIZE: 12pt; mso-font-kerning: 0pt; mso-ansi-language: EN" lang=EN></SPAN>[/code]A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1DeducedD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
# ^4 _* E$ m% ^9 _, R5 n Key words: Germany,Goldbach,even number, Odd number ,prime number, MR (2000) theme classification: 11 P32 Email:suxiaoguong@foxmail. com
* J' l2 y" h' [* \
作者: 数学1+1    时间: 2013-12-6 13:21
                  Goldbach’s problem (pdf)
                       Su Xiaoguang5 F7 F+ y$ l2 ]
     
Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:
A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
Deduced
D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
- ?& n6 ~9 I+ E3 W
Key words: Germany,Goldbach,even number, Odd number ,prime number,
MR (2000) theme classification: 11 P32
Email:suxiaoguong@foxmail. com

作者: 数学1+1    时间: 2013-12-9 10:43
                  Goldbach’s problem2 b6 n$ ?. O8 i1 E: R0 {2 N7 g
                    Su Xiaoguang. u! v% C% k- l; ]. z! m% s
Abstract: In the analytic number theory Goldbach problem is an important issue. The authors studied the:+ X4 b) e* ^3 K: v0 C+ s4 \

5 n4 O+ s5 z( o# |A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
0 L' }3 q: C  E9 L* t9 {C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
8 ^$ d. c5 H" l7 G9 E  d) h& ZDeduced
8 }3 u) o$ p8 A4 M+ I; oD(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge & a! L3 K: m; h8 d' v
1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}9 g& g* l0 \2 u$ Y$ D
, I9 c( L1 \9 R. v# G1 j% X
Key words: Germany,Goldbach,even number, Odd number ,prime number, : n/ z, _8 T+ I* q( T1 q6 h3 [
MR (2000) theme classification: 11 P32 ; j+ [1 f3 V3 L5 \- ?
Email:suxiaoguong@foxmail. com2 q4 u, J$ k$ t  B$ o
§ 1 Introduction( U9 i; X4 f$ I7 }3 c# W
          In 1742, the German mathematician Christian Goldbach (1690-1764), Put forward two speculated about the relationship between positive integers and prime number,using analytical language expressed as:  S. J# o- w; g' m( d6 W/ D  E
(A)For even number N% I( H% Q6 Q7 \) l2 t3 E, o) w& k
$ h! i! G4 H: {' G9 W, M# U
N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
' E& [* e0 o3 V. V. @) d
- l" C, P. K6 s: p  Z(B)  For odd number N1 Z( j! i2 j: t$ b3 P$ k

1 T$ W4 |- w6 @% S( EN\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
6 M0 L6 D. E' o. x8 F9 K% E' C/ d) i4 h: j8 O5 J
This is the famous GOldbach conjecture。If the proposition (A) true, then the proposition (B) True。So, as long as we prove Proposition (A), Launched immediately conjecture (B) is correct
  H* h' g; _$ ]; X' W3 k, a( n- N         
3 ]* \- F4 u& B4 j§2 Correlation set constructor0 r# @' U* Q; b+ _: |6 E
A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
% }! H) G2 C2 g4 {$ |9 c A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
& t  B/ G9 f+ m- G1 y A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}. ^4 k7 i1 r1 w4 I0 V5 ^
\cdots
2 O! I; R: Y6 |( R3 g9 r  j6 bA=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)' ?. V* B$ U- ]& [. L! K' x0 H; g
p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
+ X, ^" K" O9 O: ?7 }0 c8 i  §3    Ready  Theorem
; V9 C* a7 y, s" I0 V4 kTheorem 1$ C+ j; ?8 K! K, q8 [
M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set! o% \6 p6 T8 r- G) Q
  .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
0 i6 M+ W0 {7 v% T* Q; B! }; A\because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
& Z5 P" ?/ l3 }6 c) EM_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
' s+ z1 r3 A' n& ?+ V# b$ {M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
) [+ I9 Z% L9 M# z* y- J\cdots" a5 Y9 a7 F+ c
\therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
6 ~2 H8 G! G) d% A2 D* O. {     Theorem 2 (Prime number theorem)
7 }3 m3 ]. Z1 s  n/ R
* b/ U4 p8 {8 N+ H: y\pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}; O* J  X0 d' ?: D# x+ K
     Theorem 3  For even number x
% M9 l  \, y  P5 T1 fx>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
3 ?2 u& ]9 V* S+ dProof: According to Theorem 1, (1)  7 j$ }3 T3 D( f" V
  \because A_{i},A_{j} Countable,
, H  W" H: E: I9 ?8 J \therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
& b+ m/ t' W5 ESimilarly, according to Theorem 1, (2), C countable+ K) \3 z% V/ P' `/ h
Suppose
1 {. T  O$ m( o" |- ~  L) N      M_{1}(x)=minM(x)
/ [# [4 r. _6 o6 Y$ P( J, p. baccording to (2), Then we have
4 X4 e8 Z0 o# \. h" }( ~3 Q) @' {. M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]) s" [% R9 q$ L" X  x7 `* {
Theorem 4  For even number x
5 e: v; ~; S# L. J7 Kx>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        (3)
7 @7 r5 x9 n* {# tProof: According to (2),Then we have% u' M* f+ d; M* L7 j4 {! g
M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}% G1 Q% `5 R1 |5 M& A
     Suppose7 E% A# l/ j. v  K  i
      M_{2}(x)=maxM(x)
1 c/ f( _  F1 h' l+ w! C* S+ {\therefore M_{2}(x)* f% F' R7 u0 t' o% ?# t
=\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
$ Z/ y8 u: f4 f( f=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)- o* S' Y% {3 k- X* a
§4 Goldbach's problem end
; ~( L6 H9 K1 T( I; Z3 U" C! h4 JTheorem 5  For evem number N
- A1 [- J" l; q) S3 @! z- S1 |N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}. \" {; ^2 f( C6 A; Q
     Proof: According to Theorem 2
( r/ V9 E8 }' U7 g& l- z+ ZN> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
% F  @; ^7 ?3 d, R8 _, NLet   c_{1}=min(\alpha ,\beta ),# q1 G# y) _# I6 e/ |- z
According to Theorem 3,Then we have" z, L3 I1 P: a3 F; C
D_{1}(N)=M_{1}(N)-M_{1}(N-2)8 Z6 X& W7 q4 Z; L  o* e: c: k
Clear/ [8 w4 a6 b+ X: M9 g$ d/ q7 N
D(N)\geq D_{1}(N), O* S2 [6 j! k; H( [
\because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
; m7 C6 d( z  g5 N% ?\because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
$ x! l4 Q% T& e1 F  V* P" D\therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
5 Y# z: ~' @7 o  S) @) @0 yN\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
" ]: k' t8 z2 x& [2 \D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}" ]+ X7 |- S' g" D0 j; R3 m$ C
Theorem 6  For evem number N' R! e! z" w. E% M; n
N> 800000\Rightarrow D(N)\leq : O/ g) v: N- I' n9 W& x! N
5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
# @' s7 u/ j/ \1 s4 xProof : According to (4)1 N4 i' q3 {3 I# v
Let  c_{2}=max(\alpha ,\beta )
  L# J$ M) J7 P. G9 A. CAccording to Theorem 4,Then we have
% T$ S, `4 v5 |3 U5 ]. bD_{2}(N)=M_{2}(N)-M_{2}(N-2)/ \$ t. E7 R- w! h- g3 L6 ~  f
\because D(N)\leq D_{2}(N); o/ D% p0 k9 @
According to (5), Then we have0 L; A6 @% }/ Q( R
D(N)\leq
1 z: e1 w1 u7 i/ r2 L# {4 T2 t$ g4 k5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
' }8 m" `! U9 J1 f) RTheorem 7 (Goldbach Theorem)  1 L2 F6 R3 [$ P) O' M
For evem number N
' b  K# E7 O1 z: YN\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1% N3 t& X' X: t7 d$ O8 V
Proof : According to Shen Mok Kong verification+ D+ d$ o3 B$ m( ]* b8 N
6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1' j- ]+ M# j* X" W0 d" l
According to Theorem 5, Theorem 6, Then we have% o$ A! ?7 n- ]/ ~+ h' C' t
N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}" S  m& {( c/ v9 `+ H
\therefore N\geq 6\Rightarrow D(N)\geq 1# F8 I) Q7 Q2 O9 F
Lemma 1 For odd number N- E7 R5 b% B5 {$ C5 k, y
N\geq 9\Rightarrow
/ N) {) L6 b5 E% W% yT(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1) J. q; _( Q6 f5 J9 |' m- U
Proof et  n\geq 4+ \' C  ?* h/ B5 u/ q
\because 2n+1=2(n-1)+36 p4 k4 K9 k- A1 r8 b
According to Theorem 7,  Then we have" f$ i8 y% ~& x( C! P+ x
N\geq 9\Rightarrow T(N)\geq 1
' I7 W# l) j, m0 _
: W( P: z' ~# v0 W# ^% O4 g7 |- V; I3 B5 l
    References
5 h" I7 q! X, F8 s  G% n. F[1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.7 t  ~8 V5 n# i: V  @
[2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.& z. R; ~8 B2 T% E
[3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.5 w: V8 G$ l2 _# L! E' B+ G

; I4 _, F" F$ c5 U2 W
作者: 数学1+1    时间: 2013-12-9 11:45
阅读本帖需具备阅读LATEX文件的知识,作者有一word文件上传,有兴趣的读者可下载阅读。
作者: 数学1+1    时间: 2013-12-9 13:04
                  Goldbach’s problem
                    Su Xiaoguang
摘要:哥德巴赫问题是解析数论的一个重要问题。作者研究
A= \bigcup_{i=0}^{\infty }A_{i},A_{i}=\left \{ i+0,i+1,i+2,\cdots \right \}\Rightarrow B(x,N)=\sum_{N\leqslant x,B(N)\neq 0}1,B(N)=\sum_{n+m=N,0\leq n,m\leq N}1.
C=\bigcup_{i=0}^{\infty }C_{i},C_{i}=\left \{ p_{i}+p_{0},p_{i}+p_{1},p_{i} +p_{i},\cdots \right \}\wedge N> 800000\Rightarrow M(x)=\sum_{N\leq x,D(N)\neq 0}1
Deduced
D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
Key words: Germany,Goldbach,even number, Odd number ,prime number,
MR (2000) theme classification: 11 P32
Email:suxiaoguong@foxmail. com
§ 1  引言
. ^; l$ J2 A8 p. a0 I      1742年,德国数学家Christian Goldbach提出了关于正整数和素数之间关系的两个推测,用分析的语言表述为:
(A)对于偶数N
N\geq 6\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}Is a prime number}1>0
(B)  对于奇数N
N\geq 9\Rightarrow T(N)=\sum_{p_{1}+p_{2}+p_{3}=N.p_{1},p_{2},p_{3}\geq 3}1>0
        这就是著名的哥德巴赫猜想,如果命题(A)真,那么命题(B)真,所以,只要我们证明命题(A),立即推出猜想(B)是正确的
         
§2相关集的构造- h$ c9 t2 j7 F/ x; K
A_{0}=\left \{ 0+0,0+1,0+2,\cdots  \right \}
A_{1}=\left \{ 1+0,1+1,1+2,\cdots  \right \}
A_{2}=\left \{ 2+0,2+1,2+2,\cdots  \right \}
\cdots
A=\bigcup_{i=0}^{\infty }A_{i}\Rightarrow B(N)=\sum_{n_{1}+n_{2}=N.0\leq n _{1},n_{2}\leq N}1,B(x,N)=\sum_{N\leq x,B(N)\neq 0}1      (1)
p_{0}=2,p_{1}=3,p_{2}=5,\cdots C_{0}=\left \{ p_{0} +p_{0},p_{0}+p_{1},p_{0}+p_{2},\cdots \right \} C_{1}=\left \{ p_{1} +p_{0},p_{1}+p_{1},p_{1}+p_{2},\cdots \right \} C_{2}=\left \{ p_{2} +p_{0},p_{2}+p_{1},p_{2}+p_{2},\cdots \right \} C=\bigcup_{i=0}^{\infty }C_{i}\Rightarrow D(N)=\sum_{p_{1}+p_{2}=N.p_{1},p_{2}\geq 3}1\wedge M(x)=\sum_{N\leq x,D(N)\neq 0}  (2)      
  §3    预备定理3 Z4 Y2 j8 D2 k0 {6 W0 p
定理 1
M_{i}=(x_{1}^{(i)},x_{2}^{(i)},\cdots ,x_{i}^{(i)},\cdots ),Is a countable set\Rightarrow M=\bigcup_{i=1}^{N}M_{i},Is a countable set
  .Proof: Suppose M_{1},M_{2},\cdots ,M_{N},Is a countable set, M=\bigcup_{i=1}^{N}M_{i}
\because M_{1}:x_{1}^{(1)},x_{2}^{(1)},x_{3}^{(1)},\cdots ,x_{i}^{(1)},\cdots
M_{2}:x_{1}^{(2)},x_{2}^{(2)},x_{3}^{(2)},\cdots ,x_{i}^{(2)},\cdots
M_{N}:x_{1}^{(N)},x_{2}^{(N)},x_{3}^{(N)},\cdots ,x_{i}^{(N)},\cdots
\cdots
\therefore M:x_{1}^{(1)},x_{1}^{(2)},\cdots ,x_{1}^{(N)},x_{2}^{(1)},x_{2}^{(2)},\cdots ,x_{2}^{(N)},\cdots Countable
     定理2 (素数定理)
\pi (x)\sim \frac{x}{logx}^{\left [ 1 \right ]}
      定理3  对于偶数x
x>800000\wedge M_{1}=minM(x)\Rightarrow M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x) -1\right ]
证明 根据定理1, (1)  
  \because A_{i},A_{j} Countable,
\therefore A Countable\wedge B(x,N)=\frac{1}{2}(N+1)(N+2)
: k/ D( x1 o) a1 b6 d8 U- j; {) _类似地,根据定理1,
(2), C可数  ; z' }+ y! \* w7 v+ O6 @, ?9 P
设      M_{1}(x)=minM(x)
根据(2),那么我们有.# ^9 O. Q0 }4 g
M_{1}(x)=\frac{1}{2}\pi (x)\left [ \pi (x)-1 \right ]
定理4  对于偶数x
x>800000\wedge M_{2}(x)=maxM(x)\Rightarrow M_{2}(x)=4\pi (\frac{x}{2})\pi (x)-2\pi ^ {2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)                        3
证明: 根据(2),那么我们有4 N0 m# |$ ~8 C! J! \$ N
  M(x)=\sum_{N\leq x,D(N)\neq 0}1< \sum_{3\leq p_{1},p_{2}\leq \frac{x}{2}}1+\sum_{3\leq p_{1}\leq \frac{x}{2},\frac{x}{2}< p_{2}< x}+\sum_{\frac{x}{2}<p _{1}< x,3\leq p_{2}\leq \frac{x}{2}}
     设   M_{2}(x)=maxM(x)
\therefore M_{2}(x)
=\frac{1}{2}\cdot 2\pi (x)\left [ 2\pi (\frac{x}{2})-1 \right ]-\frac{1}{2}\left [ 2\pi (\frac{x}{2})-\pi (x) \right ]\left [ 2\pi (\frac{x}{2})-\pi (x) +1\right ]\cdot 2
=4\pi (x)\pi (\frac{x}{2})-2\pi ^{2}(\frac{x}{2})-3\pi (\frac{x}{2})-\pi ^{2}(x)+\pi (x)
§4 Goldbach's problem 终结+ b/ ?& T8 |  O" ^* U
定理 5  对于偶数N
N> 800000\Rightarrow D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
    证明: 根据定理2
# i# i  Y1 X/ R8 u" W$ w! ^ N> 800000\Rightarrow \alpha \frac{N}{logN}\leq \pi (N)\leq \beta \frac{N}{logN}      (4)
让  c_{1}=min(\alpha ,\beta ),
根据定理3,然后我们有
7 U+ E+ ?* t" ?$ m      D_{1}(N)=M_{1}(N)-M_{1}(N-2)
显然
- z  ~# e$ u' C$ U7 S- ]; E       D(N)\geq D_{1}(N)
\because log(1+x)=\int_{0}^{x}\frac{dt}{1+t}=x-\int_{0}^{x}\frac{t}{1+t}dt
\because x\geq-\frac{1}{2} \Rightarrow log(1+x)=x+o(x^{2})           (5)
\therefore D_{1}(N)=2c_{1}^{2}(1-\frac{1}{logN})\frac{N}{log^{2}(n-2)}+o(1)
N\rightarrow \infty ,o(1)\rightarrow 0\Rightarrow
D(N)\geq 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}
定理6  对于偶数N
N> 800000\Rightarrow D(N)\leq
5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
证明: 根据(4)
让  c_{2}=max(\alpha ,\beta )
根据定理4,然后我们有
/ ]' f4 D! \3 K: S! o       D_{2}(N)=M_{2}(N)-M_{2}(N-2)
\because D(N)\leq D_{2}(N)
根据(5),那么我们有! [" e" y6 z+ s0 k/ s) w; X* o
       D(N)\leq
5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
定理7 (Goldbach Theorem)  
对于偶数N
N\geq 6\Rightarrow D(N)= \sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\geq 1
证明: 根Shen Mok Kong 的验证
/ ~4 h9 E6 c7 M/ D* z3 X1 M
      6\leq N\leq 3.3\times 1000000^{\left [ 3 \right ]}\Rightarrow D(N)\geq 1
根据定理5, 定理 6, 然后我们有
# I& o, b8 u0 k0 B- G" D  U9 y
      N> 800000\Rightarrow 1.8432(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 5.0176\left [ 1+\frac{2}{logN}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
\therefore N\geq 6\Rightarrow D(N)\geq 1
引理1 对于奇数N
N\geq 9\Rightarrow
T(N)=\sum_{p_{1}+p_{2}+p_{3}=N,p_{1},p_{2},p_{3}\geq 3}1\geq 1
证明: 让 n\geq 4
\because 2n+1=2(n-1)+3
根据定理7,然后我们有
! h4 {1 k" u  |* q2 [      N\geq 9\Rightarrow T(N)\geq 1
    References
[1]  Wang yuan,TANTAN SUSHU,Shanghai, Shanghai Education Publishing House(1983),42.
[2]  U﹒Dudley,Elementary number theory, Shanghai, Shanghai Science and Technology Press,(1980),195.
[3] Pan Chengdong,Pan Chengbiao,Goldbach conjecture,Beijing,Science Publishing house,(1984),1.

作者: 数学1+1    时间: 2013-12-9 13:56
我国数学家华罗庚,闵嗣鹤均对M(x)的下界做过研究,潘承洞,潘承彪对D(N)的上界做过研究,他们留下了遗憾,也留下了经验.
作者: 数学1+1    时间: 2013-12-13 15:32
D(N)=\sum_{p_{1}+p_{2}=N,p_{1},p_{2}\geq 3}1\wedge
. H4 K, w. X& B0 M: X1.83150(1-\frac{1}{logN})\frac{N}{log^{2}(N-2)}\leq D(N)\leq 4.36166\left [ 1+log\frac{2}{N}+o(1) \right ]\frac{N}{log\frac{N-2}{2}log(N-2)}
9 \5 O6 _) q7 f/ X! \0 H
作者: 数学1+1    时间: 2013-12-14 11:37
若N>800000,
7 `, t  ]0 m0 y9 {2 X9 |则   1.83150(1-1/logN)[N/log^2(N-2)]≤D(N) ≤4.36166[1+2/logN +o(1)]×
# ]" A8 I5 G! ?( V* V' U2 A! j5 IN/{log[(N-2)/2]log(N-2)}& S" L& u( N  O- q9 t
这就是哥德巴赫公式,有兴趣的读者不妨检测一下。
作者: 1300611016    时间: 2013-12-28 18:21
楼主的帖子怎么样?赶紧试试这里的快速回复给楼主点评论
作者: 1300611016    时间: 2013-12-28 18:31
本帖最后由 1300611016 于 2014-1-4 09:08 编辑
) F- O, p+ A$ f1 \0 O% Y. e
* w$ }$ K  P- X. ?" j太烦,可以用一个简明的形式,如·同偶质数对·形式展开详细见http://www.madio.net/thread-202136-1-1.html
) k  [, G' g; T. `& g% W+ s一般的用简明浅显的形式表述更容易推广,如能用初等数学表述这一问题,可以尝试一下。但不妨碍专业研究。
作者: 数学1+1    时间: 2013-12-29 21:30
1300611016:
0 e8 ^  g/ h2 N! S8 [3 g: F      你如果能多读几本数论方面的著作,你就能理解哥德巴赫猜想,理解哥德巴赫猜想中D(N)表示什么?也就不感觉烦了。




欢迎光临 数学建模社区-数学中国 (http://www.madio.net/) Powered by Discuz! X2.5