设为首页收藏本站

数学建模社区-数学中国

QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1402|回复: 0
打印 上一主题 下一主题

初中数学记忆顺口溜

[复制链接]
字体大小: 正常 放大
浅夏110 实名认证       

542

主题

15

听众

1万

积分

  • TA的每日心情
    开心
    2020-11-14 17:15
  • 签到天数: 74 天

    [LV.6]常住居民II

    邮箱绑定达人

    群组2019美赛冲刺课程

    群组站长地区赛培训

    群组2019考研数学 桃子老师

    群组2018教师培训(呼伦贝

    群组2019考研数学 站长系列

    跳转到指定楼层
    1#
    发表于 2018-11-17 09:02 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    一、不等式

      解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

      高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

      证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

      直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

      还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

      二、数列
    等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

      数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

      取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

      一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

      首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

      三、立体几何

      点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

      垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

      方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

      立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

      异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

      四、平面解析几何

      有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

      笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

      两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

      三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

      四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

      解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

      五、集合与函数

      内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

      复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

      指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

      函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

      正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

      两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

      求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

      幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

      奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

    六、复数

      虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

      对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

      箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

      代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

      一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

      利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

      减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

      三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

      辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

      两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
    七、三角函数
      三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

      同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

      中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

      变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

      将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

      余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

      计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

      逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

      万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

      1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

      三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

      利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。


    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    手机版|Archiver|数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号|繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    GMT+8, 2025-11-6 15:22 , Processed in 0.450342 second(s), 47 queries .

    Powered by Discuz! X2.5

    © 2001-2012 Comsenz Inc.

    回顶部