QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 58561|回复: 328
打印 上一主题 下一主题

数学专业英语-(a) How to define a mathematical term?

  [复制链接]
字体大小: 正常 放大
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

跳转到指定楼层
1#
发表于 2004-11-27 13:39 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
数学专业英语-(a) How to define a mathematical term?; K' T" _1 u) i9 X; ~1 U * |0 P4 x" I+ e! y9 @# b

9 `) n" i$ ~2 O T

% \2 r* P7 C: D7 y- p4 j* l, w

6 D; d9 Z; h. H" J

数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if…then…”的格式,其他的格式一般地说可视为这一格式的延伸或变形。 2 W4 _: U% j9 M9 [# v7 I" b! s' g 5 w |# U" A5 i- `* f8 m' r # U+ \2 V9 \" Y! k$ l+ `! X# Q

" y+ a+ \$ @+ A8 R) ~* g5 j$ Z

如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If……then……”的句型,而实际上是用“定语部分”代替了“If”句,因此我们可以把“定语部分”写成If句,从而又回到“If……then……”的句型。 0 z/ e% Q5 }# U9 M3 a3 H2 |

" W0 Y# c. U( \' }

# F- u8 A- j4 L: s: E i

至于下面将要叙述的“Let…if…then”,“Let and assume…, If…then…”等句型,其实质也是基本句型“If……then……”的延伸。 / ~! E' R; P0 F2 l9 k

% u. ~7 G5 B; W1 U

/ Y4 q+ t( v. U$ W! _

有时,在定义或定理中,需要附加说明某些成份,我们还可在“if…then…”句中插入如“where…”等的句子,加以延伸(见后面例子)。 + l! \$ U1 A5 g! i4 p0 f9 h& p

) [, U& T4 J; s; C# i

! b3 u3 P4 }3 ?8 J. K c

总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。 # q0 t0 g" O6 u/ B/ z+ Z

5 _8 y. ?" s, M* k6 c; ]1 T$ q

, p" e4 e( f& u( n1 m" v4 v

6 I3 Q& V t: I; f

6 Q' F; s' j! e! r8 E1 \3 t

. M# d. g" X/ m; `- E) i1 T3 R

7 V9 H0 N% }5 d

- c3 f$ \4 i# X

% z$ e) U. D6 v" W( N R! J+ e

aHow to define a mathematical term?

# F+ Q0 l6 ~2 o6 n8 e2 N

6 L# G! e2 Z, ^ Q: Z0 z8 M5 m% Y

0 Q! F; t$ d4 Q7 e

$ c$ N$ Y" I4 r& W+ \1 m+ S) | e

8 r j8 I: C& T9 o8 [5 h4 v" `8 r1 N7 {: o. V. W& g6 `! f$ m
% X& w+ s$ `9 u- b+ u; p9 {

is defined as 8 y, |$ u; t, |6 i

: P1 q5 ^* E, i/ b

* S+ m- A( z Z6 ~% ~6 x

is called 9 n4 p( P: U; g( D6 ]

8 J! c/ z' c6 A

% W) G. |4 X W- B- ?1 j, n5 H

1. Something something 8 Y2 k# C2 e( t7 P& F$ D0 B5 Q. Q

5 a9 [ y( t8 G; o

8 f7 w; {! n- U# B

+ J4 E* x0 F* V. V' K

- U- K- e# c3 ]5 B. n

' c4 W/ g6 \' `. O$ A( m3 I' S( P

# i5 S$ z. v) I5 W

7 P) ^+ b! ~- ~; r" `- c: z8 v

! p- V: Y$ `. S; c" ^* m+ E2 v# r

The union of A and B is defined as the set of those elements which are in A, in B or in both. * @2 C; K5 x! a/ a

; p0 Q! O" c1 e

; G9 ?: m9 L: G- D" E

The mapping , ad-bc 0, is called a Mobius transformation. ( P; F2 u7 U% _7 [) E- Z

( A3 n& ?9 n: w7 _

0 n- m& N& z6 [

5 o# y! b b& u9 G- h! v5 g$ \' \. l: d# [( r3 X/ U2 H' b! i/ n1 X
* p( u. M4 w3 U9 k, g5 t3 Z

is defined to be ) q" v7 Q: K5 g+ o

% E5 p. h# G- u! B+ P! G$ M

4 q7 n( `! u/ z% t, n

is said to be % Z$ X8 ^2 K4 V) y; m8 ]% Q

' {$ r# O, ]+ _" `2 c( Z0 v0 u5 r

" N+ v3 b4 B8 r, A* n5 a' K1 {

2. Something something(or adjective) 8 E8 _9 G) t% v* L! `) {

" e! o/ ?9 M# s" X& N

% {' A# n* a9 L/ y$ t

+ W/ B R1 j/ @" Q

8 N( a0 u' W4 ~. ~" ~

% P1 I; }, {: _7 w0 _7 Z$ e, p

9 m0 s( W x7 `$ p1 L- K) e5 w

) W+ W3 _, I; g: v! V

: X! l4 [, T. q. ~

The difference A-B is defined to be the set of all elements of A which are not in B. ; p) D4 ~- V4 z0 E5 C7 `

' E- q- w# l8 t* ]. V5 p% J) e

3 U1 Y- K( ^9 ^* Y2 c) a" D

A real number that cannot be expressed as the ratio of two integers is said to be an irrational number. ' m" h& ?& x' o$ S. q9 o; Y

6 y. N& L8 A6 |# M! G

1 T. C- {# k# u7 [3 F% a6 D

Real numbers which are greater than zero are said to be positive. ) i4 I! R4 u+ X& B N" X- K( a7 g

8 g9 R+ k1 B. [; x& r4 K

- `5 l& O9 A! f$ C

" r& H0 z7 o" z& W' g* s# U. L! C! |. j& S: b( L4 W, R$ x# e% V
1 a1 X8 r/ X5 a

define / Z7 T( C1 a( Y, U2 C9 \

/ d& i+ y. v" J2 K" Q

$ E/ y/ W3 k7 u. f" ^; X/ m" ?5 I

call 1 L, c; C3 C4 @2 m( L ?% R. K

% f+ L, V0 r0 f7 d& U' ~0 L

8 ]! D' t# P4 Y- @# ~# \9 k* s2 r

3. We something to be something. : w( _3 r5 q. c8 M4 o% B% p# f

0 H' N0 o6 M1 i6 t# X

* y- v: j8 w o" ~& K

' g/ C& Q& {( E E

* c! r( V. l* E. e% _: f

: q: `# u3 m% E- T( D3 d

; z6 j. N( z# c9 E' K

9 k M, E2 X( H% Z# s& y; z& g. a

( x1 L; L% F6 J5 W9 i& W

We define the intersection of A and B to be the set of those elements common to both A and B. 8 `1 X6 y: K" c8 {% u5 \

9 [/ C; @) U. y5 P

0 \8 ~% z" `, h

We call real numbers that are less than zero (to be) negative numbers. 2 i' C( L6 u# h% b' m

8 `4 |2 M! P; S/ B9 r

; K( O5 @- V2 ~# }

4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式: , r6 m2 o& ?7 ~

2 d! c# Y/ R3 q; T0 w u2 S

; B+ N5 ~7 U% V j' d

. F$ i I9 S& ?: x: @- f

) ^8 }2 n2 u; s# h

7 _; u, w5 K% Y6 Q2 T7 _

3 t4 a' L2 X! U, k/ O( j b

: J! A" V" Y9 C! b+ [1 r# u

8 d- t0 @: i5 I! n. h4 u! m

6 w }8 ^) l# W: D* a& q2 T! n' t) b4 R3 _% ]$ C% v8 D3 ]0 z) Y- I; c
' F3 s% F$ l# ^5 A

is called 6 F& A2 s- k% D* T

( q# q4 m) u+ H$ A8 u/ [1 `

/ n/ h# y7 O4 S# N3 W3 _

is said to be 5 @+ R1 A: R# r1 m

& z0 w5 n" E: Y1 ]. t

" q* d4 m7 v' ?8 _3 l

is defined as # _9 c) k4 I! w e/ y$ p/ N

( X. ~/ @+ G: A+ q5 f& m

d& a$ U# ?: |' b" g3 ]1 b$ {; h

is defined to be , X1 F/ c& ^" o! Y2 R1 M1 W% |4 E

- A5 @* X2 j6 B4 ?/ `2 D( S( ]6 M

0 @: m: F' w( S9 x9 y, h+ o4 V

Let…, then… ( G+ P. g. B! q! e. |4 J

3 D0 ^5 y- J# I+ A$ f

9 g' z9 N) K1 R# t3 G9 _

. G- O4 [& R" h3 Z

$ Q: ~6 [5 m& Y0 P t. X% e

1 z! b# K: b* V, ^ }% H3 L' K

$ f% n% N- K1 y( l# k/ w6 u2 S- M

( S# ?$ N6 q6 Y4 T5 }' R5 l8 C& Q

# G% Z# | y' R$ A

4 N1 h" y" S" E; R7 F/ o& I3 X' c, z

7 A% p2 y. y- F6 L8 s2 q% e

7 ?# Q6 K9 O* u& D6 n9 `; y1 Y/ G

# I0 Q! ?5 j7 X/ U6 ?: g

% X! ~. S, P1 c d

4 S; M. |, i; k' h: J! A8 M5 i* T! q: \

Let x=( ) be an n-tuple of real numbers. Then the set of all such n-tuples is defined as the Euclidean n-space R. 9 y' A$ J, ~5 A# m

8 R8 z6 c5 z9 t9 k D7 ~1 `2 n

2 S2 C9 [& o' F! k& u# W

Let d(x,y) denote the distance between two points x and y of a set A. Then the number $ T' L# `4 Z( b2 |9 ^ R3 l& h2 }4 ?

% V: t. Q: r- Q( Z1 G+ v* s+ b

) r1 e7 i; D. [ n( j

D= ( {' R7 G* ?: o* P+ V, n& k1 C

l, \1 o; `7 ~6 v' t

3 T6 ]& ~* F3 ^; Q8 ^

is called the diameter of A. ' `5 i' n, w- }% f: Z/ w' i

3 p# Y, m& y; | Q7 a8 w) [

( W2 g+ z2 r5 A+ T( `

5.如果被定义术语,需要满足某些条件,则可用如下形式: 2 D; r0 P P: L5 i2 O* Q8 w

5 x# F' ?! P2 d" v) c* P' u; h

$ ^; @) b# k9 r$ K) P

( ~& h8 l6 N) q8 v9 x* X/ T9 [( D( G8 N% t* {0 x5 e: l. m% a! G @! D
7 z5 d' {7 l) p# S' V2 Z

is called ( n/ g3 @& D$ Q: J1 p

' \: |. @* w( g2 {

" C3 \2 t: z3 g+ k

is said to be - T1 _4 ]: g* X+ }/ f& T K$ b

. Z. p5 E. m, N# C5 |2 F

$ `2 d/ x' y0 C* L

is defined as ' h E* G0 I! N

. q* M, @# w% j7 Z

, q, z: E0 O0 I( A+ y" [

is defined to be , r% D) L" |4 S- A5 @

( C, u' R0 A! d9 `3 L

- ~; F: }: v* [

If…, then… X9 s$ O7 @: T r

0 ^3 e3 u" h: V0 C7 I

, ]1 u& S/ f8 T9 z/ o

! j0 H: R, Z. {

7 E; F9 @$ _3 X% x) h: k

6 ?' s/ j7 _' J. w

% `5 y$ s, w. U1 C/ T

+ @+ E/ W! A5 z

; h6 E: K3 ?' ~+ a2 s% B

8 i' U5 p) O3 y% M2 f

: s# I0 ^% V/ H4 Y$ c

, O' t2 [, P6 F: J: n: _+ b5 l) P

: l1 m# ^ _6 u- p4 y

# x' `- _: }6 v+ K2 R( X

! w1 x& V+ }# k+ n A% Q

If the number of rows of a matrix A equals the number of its columns, then A is called a square matrix. # W0 W, x' H6 U6 C5 l* ~

& `, y* ~! ]6 [5 _' i

, @( N: o' m$ C

If a function f is differentiable at every point of a domain D, then it is said to be analytic in D. # y3 n; m$ v. d7 \1 U* w$ u9 C

4 x& [0 }' u5 r" Q, ~% y% R* I; L) s

9 ~" x% `4 m, s0 X

6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式: / F- i+ e* c4 @" z# ]6 z9 a

: R8 U- `+ r3 X3 N

8 q+ j9 J6 w m1 T; k( H

" R# F" e2 y* h$ O: K" N! ~

, H& K' u; l4 A( K" [9 ^4 S; n5 N7 e) _- D d3 W0 Y' F N; v6 A3 d9 A. R
4 ?# s$ x. b6 `( H! H
9 g5 j: A" ~3 Z5 @0 _

is called

7 |; g2 Q$ J" O6 o

is said to be

s4 }# ^& v( y. H X& h9 U6 K# K1 t% A" @2 t/ e" X4 v) |& E0 n2 z6 y8 W+ O' d1 }7 o" S( v! d- L
- R& F( M3 f( k u! k
. c* g# {# e/ F K

Let

5 }0 Q, p+ w! ?

Suppose

…. If…then… … * E# {/ [1 i- g4 _4 k Q. P7 G2 y

/ L$ D4 c- I6 N' i2 I2 ^# ? e

- q* B3 I0 N' C2 j" _6 X

7 }0 V' Q2 p. S8 t

2 f- w" S7 @2 {/ Z/ T

, a( p8 } K8 x6 H( t k

6 x' S- o7 \1 R+ x, j/ F

; o/ U9 q% l% d8 s

3 W! K! Z0 b: P: |

Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件)then f(z) is called a schlicht function or is said to be schlicht in D. ; ~4 a* F9 F' {: _% j& f7 P+ b

' P# L: j @6 q2 Y' A/ J

; H' _9 Q2 L: f* ~& h9 O

7 m, q5 ~% p1 R9 T

! D* m9 T/ l3 x1 x6 X _' d

zan
转播转播0 分享淘帖0 分享分享4 收藏收藏24 支持支持7 反对反对1 微信微信
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

7. 如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式: / o. |( { N- U$ ~- f# @1 }

suppose

assume

Let…and …. If…then…is called…

Let D be a domain and suppose that f(z) is analytic in D. If for every pair of points and in D with , we have f( ) f( ), then f(z) is called a schlicht function.

Notes:

(a) 一种形式往往可写成另一种形式。

Let{ }be a sequence of sets. If for all n, then{ }is called an ascending or a non-decreasing sequence.

我们可用一定语短语来代替“If”句,使其变为“Let……then”句

Let{ }be a sequence of sets with for all n, then{ }is called an ascending or a non-decreasing sequence.

(b) 注意“Let”,“suppose”(“assume”),“if”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为:

Suppose{ }is a sequence of sets. If , then{ }is called an ascending sequence.

Let{ }be a sequence of sets and suppose that then{ }is called an ascending sequence.

但下面的句子是错误的(至少是不好的句子);

If{ }is a sequence of sets, and let , then{ }is called an ascending sequence.

(c) 在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“and”,“where”,“in this (that) case请参看PARTIA第一课注1和第二课注456

If every element of a set A also belongs to another set B, then A is said to be the subset of B, and we write

A real number is said to be a rational if it can be expressed as the ratio of two integers, where the denominator is not zero.

(d) 在定义中,“if”句是关键句,且往往比较复杂,要特别注意在一些定义中,“if”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“if”句的结构作为例子加以说明:

If for every >0, there is (there exists) a >0, such that whenever 0< , then we say f(x) has a limit A at the point a.

上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例:

A sequence of functions { } is said to have the Cauchy property uniformly on a set E if for any >0, there is an N such that whenever n,m>N.

当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。

下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。

If, given any >0, there exists a >0, such that whenever (if,for) 0< ,…

If, corresponding to any >0, a >0 can be found such that whenever 0< ,…

If, for every >0,there is a >0, such that 0< implies .

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(b)How to state a theorem?

数学专业英语-(b)How to state a theorem?! q! o% V$ P: q8 y) [% H2 ~" ]* l " B- R% o1 s8 |9 P7 ~( l% j

5 k# c1 d, s3 F1 ?- i7 Z

) s( e A- \) p K. U" z, U% u

! T/ r& H! f& C8 S

定理叙述的格式,基本上与数学术语的定义一样,只不过在术语的定义中,“then”句有比较固定的格式,而定理的“then”句则随其结果而变吧了。 ( l% [, n- \0 V$ d6 P& } % j. Z" U) K( p8 O8 w0 ]4 D1 A8 w! } G/ Q$ L2 V: C3 {0 B$ ~

; C+ O2 d# k/ {/ T# C' f( _

1.某些定理可用简单句叙述。 $ C' n2 G$ Q4 c5 D" s

8 p' \& \4 s) r' L

& F6 `8 J5 ^. l8 S' X+ N! n

The union of a finite number of closed sets is still a closed set. 2 k* Q) e" _* f. X' B' V9 A, ?

8 C# T3 s) X; Y7 u1 I) w

! Z7 T: I" W0 e, |

The space (E,f) is complete. 9 c6 R2 m$ `& U. z% |1 R0 v% S

6 g! _6 j; N7 n' R: e

; t4 R4 n8 @9 x9 T1 Y$ m2 l+ T- ~

2. 如果定理的结论是在一定前提下得到的,则可用下面形式: + q: z. r% }3 L% k2 v0 s: B$ L1 B

o; {9 `. Q# _; }. I. `

: Q& k) `# ^3 x2 V) q$ y# R

“Suppose…Then…”or“Let….Then…” 1 J: m1 E* `4 |7 l9 R

5 {0 m! @ _; H3 ]/ N0 H8 B: D& O/ }

4 o8 K: C, [0 B( m4 V" D

Let f(x) be a continuous function defined on[a,b]. Then f(x) attains its maximum and minimum on [a,b]. ' [ d w6 h+ g: { b

/ N9 w. a' v3 Z8 T B1 |

7 u) V) H8 J0 E0 x/ @- S7 H

Suppose that f(z) is analytic in a simply connected domain D, then for any closed simple curve C lying within D, we have 0 ^% C/ y3 ]' r( p3 J% G

4 @4 J8 q# ]: u+ R. {7 M

1 ~' P3 a' Z! L( m5 Y3 \

% Z& t2 j1 d$ P( c9 ~5 T# k1 ?

6 r) u& [$ g7 e* R0 e

! ~# x( g) _/ v5 ^3 c, j

3. 如果定理的结论在一定假设条件下成立,则可用下面的形式 * l8 s+ P& q% i6 n7 x# @, M3 i

/ x, L' J( j- J

9 b3 B. e2 A y }" n- I9 R

“If…, then…” + V% t0 F( |. l3 F y

% S; M9 ]5 H/ v, L8 @% M

6 r. [4 ^5 i+ G. e: h

If P(z) is a non-constant polynomial then there is a complex number c with P(c)=0 ; [* H- l: ~* b7 O) ~! V: _1 m

7 Z6 f4 J9 d( Q- e

. F- R4 o7 T3 H4 M

4. 如果定理的结论除了在一定条件下,还需在一定前提下才成立,这时可用如下形式 / S5 Z6 S, v% l0 r$ D/ R" p8 I

) A' b) k. {3 C. E+ k

+ v: @6 _! g, f$ j

“Let…. If…,then…”or ! Q3 d$ c1 d' g$ t, E5 @

; ^+ E; s3 \8 T" D

8 \" a4 _: O- e; G3 k2 |/ t

“Suppose…. If…,then…” m M- v5 V+ ~3 P# x/ v: m

/ j" @) \( n2 a: I% L% Z

& `+ \9 J) w9 U

Let , , , be four distinct points. If all these four points lie on a circle, then the cross-ratio( , , , ) is real. & R% a2 ]) c l, U

4 J) K, h) ?1 |! { M

1 L2 N7 z& r6 R' I

5. 如果定理的结论在不同层次的几种条件下面成立,可用如下形式: - I2 L1 L7 U4 U5 n( |5 `0 u

2 T0 t" T4 g0 C9 \! @0 I& K& {

2 d* `1 ]4 i2 n+ a* ^, z

“Let…, and assume….If…then…” 5 m+ z6 r% R% G" i6 E5 i$ W) ~' J

& h# w2 S* U7 F$ N; I' _0 w4 X

9 W+ e- X7 z6 Z. p

Let f(x) be defined on open interval I, and assume that f(x) has a relative maximum or a relative minimum at an interior point c of I. If the derivative f’(c) exists, then f’(c)=0. % ?+ m! R' W: R

1 }- s. ^: I" ~& w3 ?: W, l; y/ t

- K: g, m. J! l6 f# |, K

" t! [ q. e7 r4 N; Z8 I

' N7 _% z- n; X* M8 x0 ~$ a

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(c)How to write an abstract?

数学专业英语-(c)How to write an abstract?3 s9 P# Y" B+ A ' l" b* H5 c0 f9 L

0 G y0 l0 f. \

! o/ l7 ^* }6 [

3 L- q+ B- L" a

论文摘要的写法不像数学术语的定义和数学定理的叙述那样。有一定的格式可循,但对于初学者来说仍有一些常见的句子可加以摹仿。现略举一些这样的句子,并附上一些论文摘要作为例子,供读者参考。需要指出的是,我们这里所举的例句对普遍的文章均适合,比较抽象,具体的论文摘要除了可用上下面某些句子外,必须有具体内容,更确切地说摘要中要包括一些 key words 以说明该文涉及的内容,但一般不要在摘要中引用文献。 9 M3 D. e$ a$ Y5 c( y$ f8 ^ o4 r+ [8 r# X 3 q7 W# |; K1 ?& a& Q U0 l0 h- M

& o4 R& ?- c' w- }# e

1.开门见山,说明文章内容,可用下面的句子起句: & S& y7 y' d. J. D' V- @( g F# B/ ~, ?

+ S/ s9 \6 e( K' k- m5 X

9 `) d9 Q" | ~# r1 [1 p& d( G2 a5 w

2 l. M$ | o9 ?5 n- p4 Z

7 c) J' Y. G* H, ~; v5 ~. T S5 K6 O- R) V7 J( U5 H2 H+ S+ v# ?& U0 n2 x5 ?$ H
+ V3 x2 @# T4 O, H! F# U" S3 U$ M
/ S2 l& ?6 i$ u

prove

' ]% h( R x# [3 K+ d0 z

show

/ ^. H- ]# J( o8 R3 M9 G

present

6 ^2 C" s. Y8 Q3 W

develop

# p4 ]. Z" D7 T( T4 ~

generalize

0 H0 s0 @6 g; ~1 \8 `

investigate

" ]+ F& l2 w; |7 t- I3 f- `5 f

* @ M' z! D a8 B- M

# k7 E5 n, a+ q+ D& J8 ~9 S! ^+ h- i

& `; C9 `+ {: d, q' ^ : U+ R+ `/ N! B1 H! ?) n( [" J; f9 b: Z: u1 t7 g. h! ?: a9 k2 z0 ~. W
1 t r: X0 D% Y
1 B; E, U8 V; U \2 ~" X

paper

( k, U2 z4 C2 d9 [( c% C

note

& ^2 e# N5 g- q2 C, p. r" J- X9 s9 ?! y5 F: c- r! ]' }' _4 l$ H) ?9 L( J5 q% ~; h* L; U8 a" i
- H+ l: J* v3 [1 H% @' x# L; M5 m
/ N& r! ^2 w3 [3 C& U" l

aim

; N& O: R$ {2 h& X0 I4 m+ {

object

9 v9 i- l- V4 [0 h4 n1 T* H' }) J

purpose

The of this is to … & Z# b- O) d S6 o" ?0 H' x/ Q) i2 P

5 j0 R3 b4 j' s/ k8 N4 ?6 ]

6 o5 |" D* _; C) V

! b! R/ u$ F. o! \7 W+ q

% n! J+ v0 k7 q. H7 `, n

* L5 h$ m/ l$ C. g l4 O3 I8 R

* P, B" v! R c3 ?* \4 H& Z4 d8 f* L& j

! h5 h0 _9 X; p3 Y

# y4 H7 ]) d$ E' K' Y

. ] h% ^- L. }' _* Q9 g( E+ m) a

/ R0 I) O# F- r$ D3 c2 {

( k, I" a& P. {; a

" |& x7 b& u8 a$ f/ u! _- h

- e* C k; y! N @

5 r$ O0 [$ H6 b. Y+ l2 e1 b" k

, ?" g; d% f9 R) h1 ~/ \

* J- @9 K' L/ Q' y

. P( u, Y! f- \ M; z4 [

, v' W/ i, A, z9 r; z

" z" m7 ^4 l j4 h% \: C! Y

5 u+ Y" S" g" D: Q

. @0 ]5 t( P$ G2 L# Y& u# h. r

/ B, g9 y7 Y' A; v' t$ `5 g2 Z/ }4 F4 u8 ]8 u$ X0 e9 [# \3 x, S2 H* k
% h8 a+ f9 e( }& _- |1 U2 ]6 {
- L, F" E& Y) _3 I' Y

prove

$ Z/ U, Q0 \' ? V9 v, a7 a8 |6 c1 r

show

+ k0 w4 C+ M5 I0 g" L

present

. X* n- G* x+ O# A; o" L) I

develop

! m; @+ y9 p- M. W/ }$ [

generalize

! D' \, N" @* J6 q5 W

investigate

It is the purpose of this paper to ( J5 a$ H$ E5 \

2 w1 D8 i" f$ D

% \9 p1 q; k: I: N+ R; l5 _8 N9 C

5 I4 E7 E) {- e

: d" `/ L; Q1 _& N7 S j) Y% O

) G1 a; }3 }3 h! z

+ I6 ?6 _4 z( h0 b, o# ?, p

4 ?+ i: n" N) j% A

* g0 ^2 ?# G0 S# K$ i

# P& D1 A6 {5 `! L; g% ^8 Z

" N+ o0 }5 j8 e- t3 U

9 t r7 ?( x7 N- j

: W! s$ X2 g) P" e: s' |# }7 o

: v7 K/ f5 H/ r% K4 m# _; G

9 }5 m! j8 \/ B) I6 |

/ ?5 n/ c# m) c

6 D6 _2 S' i, [5 G, E

2 S) ? l: \: u) c9 q$ E& X& S6 ~# u# O

$ i% Y9 ], q0 P; E; ]( Q+ Z

$ k3 V7 m8 ]* m% k( K

5 a6 Q3 w& ~0 l: X( N b: H

5 F4 d) o1 {) ]- u" f* I( q

, C7 Y% R/ x/ F7 D+ }# ?0 E9 P# r" ?, l. T; F; K+ z3 F' m4 z+ \$ T
: `$ P L; T2 c( R7 W4 E
/ ~& T. j' ^& _: C# U T

is concerned

/ W8 N9 o9 e9 X

deals

This paper with… 0 V$ m5 X# A3 |

8 X, L) G' `" c h& K1 ]% ]$ \

0 |+ e) p) G, l4 g) L$ ^4 @

3 L; }. ^- e7 g' w$ L4 I

- z5 W3 s/ _9 X' \' n' w

4 ?$ ^0 ?/ y0 Z5 U9 ~

# F1 g+ M! p, r# \

7 S o+ I# n, q8 c2 F' p. o

; u- p- T& \( k* t) Q* w$ y

9 F3 f3 {) C2 \" @

+ a6 B+ F2 ~0 f/ o+ e3 q) j% ?. r% r* Z& F' H; x, ?: a4 m& L t8 {1 V- n1 f
: v [/ ~3 b1 J" Q
0 L$ b/ g5 f! ~# w

prove

0 J( a7 a1 c0 ]( x1 f

present

9 |. W7 K+ Z8 I- P3 L, Z& x

propose to show

In this paper we … 6 F+ X$ B( E! g* l5 b& @

4 P, s K- \" i* l' T+ d

, `% M$ v8 g7 M

p& v+ o- X/ {. s/ J( Z6 j

! c! T' w: x6 }

$ N% i1 o% b4 C# O( f# x5 K

* P" ^: t, o e7 c2 g1 l( S

6 H' H. J1 y8 {! N* D

2 Y; A% d1 T( p, {: O' L

. n& i- K5 J7 b! }! b m7 R

8 Z( R) O o) a% I+ Y" o

4 H! ~" q( x8 H1 D' ^3 j, ?

2.如果需要简略回顾历史,然后再说明自己文章的内容,则可参考采用下面句子。 2 U. l, T4 [: I3 X% ]. c( E9 \( N0 ]

! N+ L" h3 n2 G% u' h

! ?4 P- B! H* D2 b* F7 L

The problem…was first treated by…and later…improved by…The purpose of this paper is to prove that it holds in a more general case. . S2 N4 V/ w; m9 W/ E( L7 r" ?) b

i( g2 h+ M( y7 u

; b/ S/ c; H ~0 @/ n, I

…first raised the problem which was later partly solved by…We now solve this problem in the case of … ; e p# C$ V" e, c) _9 W5 n K

" V2 \) [$ T% K5 [

$ W5 p2 _0 ^- B6 {

3.如果文章推广了别人的结果,或减弱了别人结果中的条件,则可参考采用下面句子: 3 C8 V: J- ~7 H' R2 ^' ]

6 Q$ G7 W4 `+ k7 n# V

! z- K8 i+ s1 \1 Z

The purpose of this paper is to generalize the results obtained by…to a more general case,i.e.,… # @4 Y; c$ A* }4 v- k

6 a1 I% L* E+ a# u

, \9 `. C" k2 v- W

In this paper we shall prove several theorems which are generalizations to the results given by… 0 V2 [1 l0 V8 M" Z- z1 b

7 x9 Z) b; i( @+ Q" n

7 {# s0 T; f7 i% |" c3 b( y& ^

This paper intends to remove some unnecessary assumptions (e.g., regularity) from the paper on… 2 s5 t; N3 L- ?8 s, e& E* C H9 O

( ~& d4 u# }5 _" K8 q! @& s" {0 v

; c( S- N: `: i+ T9 V- z- o: s! R

This paper deals with generalizations of the following problem… 2 ]$ w4 s! i6 L. P; x$ G

& H3 _4 l3 l4 x) ^3 J- |: `4 H2 v1 V7 \

% o5 d. K$ v! v2 O# A. t! ?

This paper improves the result of…on…by weakening the conditions… ' z! |6 W% r0 \) s" Z2 g) w+ U

/ r; @9 D8 {7 j# Y

`2 Y, O! k9 W$ e* ~, U

例: ; O! \1 w5 f& o$ t$ V

* q! L0 C# A. U' g; i1 r

; B/ ~ b5 h# J/ B f/ q9 H2 z- I- m6 e

It is the purpose of the present paper to point out that certain basic aspects of information-processing systems possess dynamical analogy, and to show that these analogies can be exploited to obtain deeper insights into the behavior of complex systems. $ m, z2 e6 D& b8 Y1 Z; ` b

/ D: B3 h! a: v$ C, \) y* j

) {+ W( O' U( C* {' b* }

We present a general comparision principle for systems of boundary value problems and employ this result for proving existence and uniqueness of solutions, stability and existence of periodic solutions for non-linear boundary value problems. $ U6 [* V7 W/ ]5 P

- c7 \( O# A! V6 b. T

: M9 u. W% ] f2 ~" O5 a9 @

We proved a theorem for generalized non-expansive mappings in locally convex spaces and extend the results of Kirk and Kaun. We also obtain a theorem which generalizes the results of Brouder. ; |) W; c$ H( S9 Z2 g

( ?4 C/ b+ `/ _( n' b* y

5 [4 N1 J& W* y8 b6 L

This paper is concerned with the existence of multiple solutions of boundary problems for the non-linear differential equation of the form…. 7 F# m& ^" H, ^" U

, P; g' L8 N! ?' _! [6 h

$ n/ W8 c. C) r

This paper is concerned with the question of local uniqueness of solutions of Cauchy Problem for elliptic partial differential equations with characteristics of multiplicity not greater than 2. % A+ a' F* D" S& ^

. D3 j" ]7 ?' g- N

2 W" I" f- \7 n0 h9 T; W

The object of this paper is to investigate the behavior at the boundary of solutions to the uniformly semi-linear equation… 0 \4 S4 Q' |, U' B g+ T' n

# J5 o, l) I) N6 O% |4 t% v+ U

; z. r: F( D8 {2 \

The aim of this paper is to try to minimize the functional * M# y' i7 ~( G4 O0 Z" X' S# s

( l; g% q+ S6 w. q0 J

K0 a r I- z. B) R$ b q7 A

; X5 d. m+ V; @& a' h6 V, f; C

# E2 M2 i8 M6 |7 {% H: E) v. i" z

7 |) ]+ @6 _ u) g% A) f

over the class of all absolutely continuous functions f(x) which satisfy the boundary conditions f( )= ,f( )= . + `1 U& D* U' C

点评

kittygoodice  很棒的东东  发表于 2016-1-20 20:08
天光li  ding~~~~~~  详情 回复 发表于 2014-2-6 20:32
mongo1992  顶一下  详情 回复 发表于 2013-1-19 09:59
回复

使用道具 举报

风月晴        

0

主题

2

听众

39

积分

升级  35.79%

该用户从未签到

新人进步奖

回复

使用道具 举报

布赖        

4

主题

2

听众

134

积分

升级  17%

该用户从未签到

回复

使用道具 举报

satre        

13

主题

2

听众

228

积分

该用户从未签到

元老勋章

回复

使用道具 举报

rankvic        

12

主题

2

听众

168

积分

升级  34%

该用户从未签到

回复

使用道具 举报

summit001        

1

主题

2

听众

27

积分

升级  23.16%

该用户从未签到

新人进步奖

回复

使用道具 举报

hxo1202        

1

主题

2

听众

41

积分

升级  37.89%

该用户从未签到

新人进步奖

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-1 01:59 , Processed in 0.689113 second(s), 103 queries .

回顶部