QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 58405|回复: 328
打印 上一主题 下一主题

数学专业英语-(a) How to define a mathematical term?

  [复制链接]
字体大小: 正常 放大
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

跳转到指定楼层
1#
发表于 2004-11-27 13:39 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
数学专业英语-(a) How to define a mathematical term? & B% O( k8 n. u- R4 n4 ^# e+ ^' o0 _/ m% {" c

. O9 |6 u; V) j/ |7 Q5 B! O

4 b u; V Q I2 ?. r0 ~2 P/ n

& s& m# m! h3 K

数学术语的定义和数学定理的叙述,其基本格式可归纳为似“if…then…”的格式,其他的格式一般地说可视为这一格式的延伸或变形。 . k% l, S! D8 l# M4 N 6 e3 T0 v# e; c) Q. U! ` 6 c. h: J9 v y/ ?. K4 r% B

^0 s( k! v y1 `

如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“If……then……”的句型,而实际上是用“定语部分”代替了“If”句,因此我们可以把“定语部分”写成If句,从而又回到“If……then……”的句型。 . X2 X" i/ H; `( ^6 x( I* H& p3 J+ Z

4 A2 B$ B. V3 d5 E6 @* r/ w& z

" j2 _5 D t3 t$ t! ^- p8 J; {% f+ M

至于下面将要叙述的“Let…if…then”,“Let and assume…, If…then…”等句型,其实质也是基本句型“If……then……”的延伸。 % H$ o" v- L! j

- {& M: _% b8 @/ U

9 m$ D$ v- q T/ a

有时,在定义或定理中,需要附加说明某些成份,我们还可在“if…then…”句中插入如“where…”等的句子,加以延伸(见后面例子)。 * I: K" y. d3 l% W1 T" H5 B

- [6 K; P7 ^: t% L$ {+ ^' h( |7 _

5 l# b: ~" n) Z1 i* d. u

总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。 " O2 s1 ^+ Q/ S+ ]9 J4 ? } E; f

& B( p) M8 f4 X- o

" R3 B5 O3 Q( F1 T

' Q+ G2 Z+ u/ \3 c- k+ Q2 ~0 n

' ^+ Z+ X& a7 G

( y: r# v: H4 t. U% p

. y6 Y- O( e7 w+ V

3 o5 q: J3 S9 Y

: A* ~, ~' u) h& d; j% [# n2 s

aHow to define a mathematical term?

6 G$ N; I% L( o/ A6 N, v) C8 P

6 S0 A5 E$ K' b; b+ u! t

' N" a; V; s* s3 S( m7 g2 M9 T, Y* y

' G8 K4 W: r0 p; l- u; s

3 D \8 @# Z* e0 p% Q1 t+ C5 ^9 r! f& k. I- e9 f1 F5 L4 @) N9 M$ n3 f4 I7 j
; _( f8 A( H( `7 A/ N5 k1 E) |

is defined as - c: } l# e( D( ^

& p& e! m* b$ S% b

$ N, w! b! g4 O' `

is called 1 h1 a8 b! w/ f. Q

) ?) R0 f/ b" e* _3 V8 g# j# K/ n

$ t: Y8 h+ v. H9 x7 p

1. Something something 3 K2 w4 R, J( ]- J$ Y5 @

2 ~) t2 L8 H6 t5 O+ G5 B* K+ V

! o5 U4 Z$ Z. M$ l7 Q; @; r& l

; M7 _# m+ k3 O/ p% x

% `( {( p% m: P7 w

/ a4 p+ A1 H* \' D6 k6 j+ }

4 H) J* R. y# t: `1 e

( S) j ^# p* y8 ?) l

8 e3 P$ ^3 _4 K2 B3 y

The union of A and B is defined as the set of those elements which are in A, in B or in both. 7 _; J$ t0 I- |( J

9 j. W* Y) q" N$ J9 A2 M

6 B& k% G2 b5 ] }+ F. V# a) v4 m

The mapping , ad-bc 0, is called a Mobius transformation. 9 D. `# Z2 Q( U3 W. Y7 k9 h0 L

) b3 D# b& l' o$ u

0 W0 |/ {1 c, H2 a

+ \& O- h, q% \/ {: s& n* H. T; Y v" e; q, Q- \; F# m% A8 C! v" f
- `5 p2 F2 b/ r h8 r8 b

is defined to be / s' l- g" U1 f# d, Y; ?- w- p

: ]: T* Z) y( j- X; j/ v* K

) v% f3 t: [" Q. B& }9 I

is said to be - N4 C9 {# l* i* Q" y7 z

* a5 Q5 }" b* ~7 n" Z( E

3 Q* `7 R3 r4 D7 M2 o' \! I, F# T

2. Something something(or adjective) + K+ q) T( T" Z2 |1 b% W

& T: V) A) D! v7 m

" J0 D! J+ ]/ e# K# n: B

1 p' A9 f, y; ^# C* U' v

- m) k9 S5 s6 Y# U. X1 J

) U5 _7 ^* l% E" d5 L* n! } |

' `5 Q4 V" K, ]- w

* U" I3 P3 d5 L# P6 Q' L- p

; I! ?& L2 F2 v, n, L* } q8 C

The difference A-B is defined to be the set of all elements of A which are not in B. ; L0 ~$ m9 Z! f" i$ }

" T; P6 _) K7 J' z k

; j) `' r, @2 x9 Z

A real number that cannot be expressed as the ratio of two integers is said to be an irrational number. $ s3 E$ q+ V i( W. @& l

* U) W2 C( P+ v2 i

3 L" r J$ g. u$ C% V$ S

Real numbers which are greater than zero are said to be positive. 3 ? `0 S) q, `) I: F& V, V$ O8 T

/ ]! z; Q5 f- X3 z- I5 f

6 s( ] r- g; m( w9 z/ ] @

7 _; i; a( ~5 m: A) s! b; T8 s% C* H' K: C4 \! A; q& E2 }) z$ v' K- S" p- K1 H, @
" W: \: {* o3 o5 ?, E8 t# ^

define : _. b9 F) J" @ v4 V0 u

1 y" w9 F5 S3 |. x0 ]1 P

b' H' g: c. ]1 V# x% n2 _% P

call + P5 V% `* ]0 t+ u3 W

9 |0 h7 H' I1 i( Z4 Y

0 c$ L( @4 [' H7 q

3. We something to be something. / f+ S0 @( m- o- j

' t J' k0 q3 I1 T1 t/ m

* Q9 F( ~- {% ]9 X2 k+ S. y( n+ b) z- [

, }5 f% N& `; N

* B* H, r' ~0 b, t

$ D( l- D0 f: X. U

% l" R! q% g" ~2 Y; b5 t4 j

/ F! L1 X- y- Y1 i* h

6 S1 Z4 l3 K/ q$ X9 w( K' ?$ A/ k

We define the intersection of A and B to be the set of those elements common to both A and B. 9 d2 {0 H# Z, ]1 {, M: {

: @$ ^' Q }9 }$ M( g

& W, o/ I! B8 O/ ^2 z1 q3 o

We call real numbers that are less than zero (to be) negative numbers. 7 ~$ O! z- M* e& }

/ Y5 x7 b- T* M. |8 R! }

/ V" I7 t( L j4 F; d

4. 如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式: ' o' L r- ^# R( d, S9 `2 E. Z1 I9 j

5 {8 v% y% _& H, D" V6 F

+ w6 [# M( E' Y6 i/ L) O7 z

5 V1 b% j0 F( C1 i' Q" r

$ K% f& w2 O* \+ d+ \& W i

4 a9 M1 {$ m0 y' B# Y( @! o/ ?) {

* L! T7 ^1 u* I8 l& G& }' d( a8 g

# B5 {2 q3 c" e2 W* t

* n w3 q4 [0 y$ z1 E

; S4 l- S/ I7 c2 F, Q: h4 T2 @* U* C: w7 ]9 x, g! v
$ \4 I# l: P+ W/ W

is called 8 V6 `. o _# U# _! n" N7 j

2 M* u3 a2 d. a/ s& {

! c0 u# _1 S' P9 ]& S4 }* f

is said to be " p4 D9 q$ U3 G8 `

8 s# `5 w2 e! A% ^" S/ a1 C* x

, q: m) q7 r% h" W, n5 Y" q& `

is defined as & @; h& X4 K! |7 F r: a" a

; A8 o/ Z+ X: f- {3 K$ D

; n" ~4 @9 i/ }' R- z% N' x

is defined to be : I# U4 a: S" W$ D v5 [

9 m- u! ~, k" A) U

6 d3 j: k P* e

Let…, then… ( l! w: Q- `9 @! D1 ]

2 H7 x; w! _; q% o3 E& r' ^5 Q a: k

" F* I9 d+ J/ @' m

1 j6 l" G2 s5 v+ p9 v

( D e/ S& U! C6 }$ K4 I" u8 ^

1 B5 z. T9 p. a! |- ]

- o4 Y+ C ?6 K' W" v9 E

" l! K3 L! l Z" g. c

% K! b+ l" O+ Z2 a1 w+ n

. S+ u/ ~9 Y$ L! K1 V* A+ A0 ? a/ P

8 M7 V( E! S$ {- R) i5 G$ K& l

8 C" d& p2 [4 Y. ~

# S8 q0 a7 W1 F7 I8 r4 ~2 W8 O8 {

% R) V/ p7 n* Z' o# Q+ ]

) }) v3 u1 ?6 k3 y r

Let x=( ) be an n-tuple of real numbers. Then the set of all such n-tuples is defined as the Euclidean n-space R. 4 F: L3 N1 L4 ~6 F7 ?6 w, D6 |

) c# ?$ F6 x9 L" I, ^

! }" d3 `$ U% w( R _

Let d(x,y) denote the distance between two points x and y of a set A. Then the number 2 t6 ?7 \# z* s2 W* ^

|9 V+ Y9 E$ H, c9 W, k/ [7 f2 d. ^

9 o( S. ~! Y8 i* \

D= % `/ E# n6 x8 X6 n

0 s u. q% F+ F B

" z. Z) H# E& s3 P6 E1 u

is called the diameter of A. 5 U9 x( i# ~ N5 M6 C4 J

6 h% h1 c$ D0 K) L) a7 ?

- X* G: @$ E1 A/ O1 }1 d

5.如果被定义术语,需要满足某些条件,则可用如下形式: # D1 j7 [% j5 T1 N4 a$ E9 b

. x- e7 n2 Y% _- l) Y/ _

( m! o# x: ~/ h" q2 G# |; Z

" [2 t# v4 H& z. N' ^7 o0 B% h) a q* D" O. I- v* `$ r, V& H) v+ Q1 S' v' {' j% h6 c
& _$ H( R3 |7 u( [) G$ V

is called 8 q0 e3 {; V, Z z4 X: N! Q- c2 i

! W) F% E+ o( y$ `9 G4 V

1 q* J- E( m: B. E

is said to be 1 `# S" o; o* d) F

9 f& z) L4 g+ H. ~/ I1 ^5 v

# W& J3 r' |8 \# n/ K

is defined as % n" V9 R% v6 q3 d) q

6 {" p! h/ m+ b U) S. u

3 x2 S5 W# u g5 T" j1 M6 [

is defined to be 0 f2 {. {! n+ Q% P0 m' {

% [- `: n" o% e5 d. p9 G; Q

$ E* n1 c8 O. F6 p! n5 S$ U: [8 j/ N

If…, then… . o7 _ i% B9 j$ @

/ }* B& v; s1 B' c0 ~; }

1 q9 k# o! i- }9 l# [

* m% i: z. \2 y' S- G) M! P' W: s

+ E% ]+ b7 L; L; B

8 H, d& L/ `5 s. \& E/ |. ^

9 I/ b3 e& \, @( V

4 H! @$ ^* `; J

- W1 I/ y1 y1 K& u

+ @6 K2 _: b4 M0 x

1 g2 Y1 r8 G% `' {: u

9 K4 Q3 |' e. {% V$ ~

* w) R% ~! j% l2 c+ t

4 i |! y* s/ p6 ?, c

" t0 ]4 g6 g# J8 @( D/ N

If the number of rows of a matrix A equals the number of its columns, then A is called a square matrix. * D- \7 s+ }4 f i, l4 p- S8 D: y6 Q

* h( L( |7 `) |. _# s7 b7 I9 \7 F S

7 M X3 j+ o# a( t

If a function f is differentiable at every point of a domain D, then it is said to be analytic in D. $ G' k, k0 v4 R! R

) ?# D% z" W+ G5 o8 o3 c+ a* G& z

, j3 x: g) R- `

6.如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式: # d9 l( D# y3 d# O* v

' c# w! D: I+ Y0 D& Y* U. Z

9 F$ m7 }8 {% s: K Q2 I

" l; e: ?7 |1 C& w X+ Y- e* ?7 i

* z& d" j) Q! d7 d7 g# g, m" H3 o6 G: y/ f4 T( V: N; l t. }
/ h. g, X( A' o( Z$ l
|, Q; F7 C! N: n _- R

is called

& ~. ^. l+ k: ~

is said to be

. U( P" h0 B! q5 Z; H& t! U. ?5 T8 i! T- g4 r1 P8 M+ q+ H& P& ]6 ?: T- a. [) F5 r2 W& K& {3 D
C% J2 o" r7 S1 w6 Y
% h% h5 t6 p. h/ D& ?* c

Let

+ P! f: ^2 K9 E* Y% w. d

Suppose

…. If…then… … / ?7 u% M( u* f- g# o8 o, |

; \) h& o0 W9 v; O4 e/ s

: O1 w: l/ ]0 q& R; x

0 `+ \" X/ }; q; c

X7 ^3 ?3 E, D7 b# ^

0 {. H4 q) s/ M# ]6 G

9 Q% s z/ W. [; H$ Z/ T

) x; s4 E. b& w* u7 z8 U) o* I

( ~5 n+ k. k s$ L2 T. f6 ~/ h8 V

Let f(z) be an analytic function defined on a domain D (前提条件). If for every pair or points , and in D with , we have f( ) f( ) (直接条件)then f(z) is called a schlicht function or is said to be schlicht in D. 7 A/ b0 q. y" W( z6 r, w

4 y$ a/ F! s* U

' A& Y; L8 v& a! O1 [$ l; [% R* u

4 U( H& _3 x9 V2 r

; m8 [( o, p& k

zan
转播转播0 分享淘帖0 分享分享4 收藏收藏24 支持支持7 反对反对1 微信微信
hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

7. 如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式: 6 c. N6 H& ~! O) b

suppose

assume

Let…and …. If…then…is called…

Let D be a domain and suppose that f(z) is analytic in D. If for every pair of points and in D with , we have f( ) f( ), then f(z) is called a schlicht function.

Notes:

(a) 一种形式往往可写成另一种形式。

Let{ }be a sequence of sets. If for all n, then{ }is called an ascending or a non-decreasing sequence.

我们可用一定语短语来代替“If”句,使其变为“Let……then”句

Let{ }be a sequence of sets with for all n, then{ }is called an ascending or a non-decreasing sequence.

(b) 注意“Let”,“suppose”(“assume”),“if”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为:

Suppose{ }is a sequence of sets. If , then{ }is called an ascending sequence.

Let{ }be a sequence of sets and suppose that then{ }is called an ascending sequence.

但下面的句子是错误的(至少是不好的句子);

If{ }is a sequence of sets, and let , then{ }is called an ascending sequence.

(c) 在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“and”,“where”,“in this (that) case请参看PARTIA第一课注1和第二课注456

If every element of a set A also belongs to another set B, then A is said to be the subset of B, and we write

A real number is said to be a rational if it can be expressed as the ratio of two integers, where the denominator is not zero.

(d) 在定义中,“if”句是关键句,且往往比较复杂,要特别注意在一些定义中,“if”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“if”句的结构作为例子加以说明:

If for every >0, there is (there exists) a >0, such that whenever 0< , then we say f(x) has a limit A at the point a.

上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例:

A sequence of functions { } is said to have the Cauchy property uniformly on a set E if for any >0, there is an N such that whenever n,m>N.

当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。

下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。

If, given any >0, there exists a >0, such that whenever (if,for) 0< ,…

If, corresponding to any >0, a >0 can be found such that whenever 0< ,…

If, for every >0,there is a >0, such that 0< implies .

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(b)How to state a theorem?

数学专业英语-(b)How to state a theorem?8 n2 |' m5 C8 G. ~6 [ 4 A: l7 b7 G/ Z2 r7 `4 [2 O

) @9 ?$ q1 I& P. ?% R* a. i

% ]: e+ L' Q2 d

5 o4 O4 m- E2 g9 ]2 d

定理叙述的格式,基本上与数学术语的定义一样,只不过在术语的定义中,“then”句有比较固定的格式,而定理的“then”句则随其结果而变吧了。 . o7 U) i4 T2 n( p " Q1 O6 F1 r* u1 `$ z" X 2 t" _7 v* F0 [4 o/ I( a; h

$ K% E6 P3 I5 z6 p, H, H

1.某些定理可用简单句叙述。 ( h/ p7 ~: A9 @0 d

8 ^ P& x+ g2 _ f

' z" E; C- C' N6 E! ?8 `( s

The union of a finite number of closed sets is still a closed set. 9 B& Z7 T$ ]6 N O1 j! H

4 y* P% Y& x1 V* I4 v' y4 b1 F

; E# q( g+ s, u$ `! T0 x; v

The space (E,f) is complete. ) M7 H! ^0 e, ~" U3 G8 U) A2 k

9 v4 g1 E) s( k

& ~0 b7 W/ I, k1 W. e3 n

2. 如果定理的结论是在一定前提下得到的,则可用下面形式: 8 j4 G) W0 I# V6 N) ]2 J" V: @1 p0 {

- x% C/ c! v( _* u

N0 Y2 c: }7 C% ~: l

“Suppose…Then…”or“Let….Then…” 1 S, E, @+ N+ k: X- y3 A

7 E9 A1 n3 c7 h7 t9 m' f+ l3 k

, H- v8 x( t6 I* t& f& j3 }

Let f(x) be a continuous function defined on[a,b]. Then f(x) attains its maximum and minimum on [a,b]. 2 e8 R# u8 R& [+ L: `1 e

2 s, Q) f( W9 ?0 K

5 X& l6 b i/ P) N

Suppose that f(z) is analytic in a simply connected domain D, then for any closed simple curve C lying within D, we have / s* h) x/ _; M! v$ o

$ t. |. p# D2 p1 e3 k; Y, O' w

! G$ F6 ?$ p+ B; F$ c( }% B. O- h9 s

; Y' w7 p( D( `6 |4 ?# Z: ~

3 X2 w+ _8 @, H9 A) E: i, k3 k7 D

! W u( a& f* ~* _ I7 V

3. 如果定理的结论在一定假设条件下成立,则可用下面的形式 1 @# O7 r" P# M; u. ~0 N

0 Q c2 g W4 Y

& H/ k" q8 T# M/ g7 u% U

“If…, then…” ; v! u% ?2 B: E( E/ C6 }

7 a! v! _. ~# [' i. v0 F @, n

: T1 z9 W0 ~ P v# ^/ L$ c

If P(z) is a non-constant polynomial then there is a complex number c with P(c)=0 ; N1 N' ?& @+ V1 X e& |

( v% P- B6 h: W( z: q

- P5 ^- C3 S5 _, N

4. 如果定理的结论除了在一定条件下,还需在一定前提下才成立,这时可用如下形式 3 Q6 q t6 o l' ]* G& T e9 ^# a/ y

+ W8 S' ~. x5 J

. W/ c2 }$ O& D# e; I; h

“Let…. If…,then…”or 7 c+ j8 S. t% @$ S" V9 q

- K6 b; Y5 B& a2 B9 {, w

+ S; k" D4 o* D

“Suppose…. If…,then…” A9 y9 d) L: {

. A Z" ]0 R. e% e- a" \6 w6 b; j

5 F% X; D6 E. L0 R! k

Let , , , be four distinct points. If all these four points lie on a circle, then the cross-ratio( , , , ) is real. ' L, w5 R G# Q0 u! B3 X2 t( U

9 R- ^+ Y) O- R+ u" T) b

) U: g; o0 t5 b# p9 g# _

5. 如果定理的结论在不同层次的几种条件下面成立,可用如下形式: ) U/ V G1 X( P" ]

% r0 K; ^& }& P* f$ z+ C9 ~

8 x4 x" z+ ^/ Y

“Let…, and assume….If…then…” 1 I* {) J: K5 S

, i" M0 e/ Q0 E- s q2 H& H1 i U

! i. m( l1 Q4 b2 I9 [% g

Let f(x) be defined on open interval I, and assume that f(x) has a relative maximum or a relative minimum at an interior point c of I. If the derivative f’(c) exists, then f’(c)=0. + }1 P6 u, v9 _/ S' S' s

) b( V5 z) }7 D* Q

) O% G1 g$ U( w: @3 x

_# g0 H: H3 N" t% n3 M

) J( }1 Y, P' S5 J

回复

使用道具 举报

hehe123        

43

主题

11

听众

1151

积分

该用户从未签到

自我介绍
200 字节以内

不支持自定义 Discuz! 代码

新人进步奖

群组数学趣味、游戏、IQ等

数学专业英语-(c)How to write an abstract?

数学专业英语-(c)How to write an abstract?3 Q4 u5 o, M7 l5 n 7 q/ S* ~& G* X9 ~8 ], I9 Q- I

( O* P( Z. x: }; L( x

$ f0 E) M/ k! z$ T

$ @; s- n* d2 I2 k

论文摘要的写法不像数学术语的定义和数学定理的叙述那样。有一定的格式可循,但对于初学者来说仍有一些常见的句子可加以摹仿。现略举一些这样的句子,并附上一些论文摘要作为例子,供读者参考。需要指出的是,我们这里所举的例句对普遍的文章均适合,比较抽象,具体的论文摘要除了可用上下面某些句子外,必须有具体内容,更确切地说摘要中要包括一些 key words 以说明该文涉及的内容,但一般不要在摘要中引用文献。 8 Y0 e! {1 H$ E& f0 E+ q% R: g- F4 s: S5 C+ H+ U8 W- M 4 ?1 W5 i4 S, I

6 E. H4 {% V3 D; U- A1 v g

1.开门见山,说明文章内容,可用下面的句子起句: 2 U+ M3 O# ]! U+ j# `

5 Y4 `. A2 ]# U. |" C+ s

6 t0 c! V, v' u

$ ?8 }# ?1 J T! q6 F# [

! ?# H: N* W/ b: w5 C, ~7 g: q4 z2 f6 i9 d- B2 ?+ P2 U; s: p
6 i$ V' } K% s" n
% ~& X% X$ E6 S0 J

prove

) R y* a7 z; u H, a# c$ A$ w

show

. a% k$ }$ }7 W9 ?! |

present

! n: j/ ~- t! V8 u9 u3 j5 R: o: j

develop

& N- |. M* n i: j7 z

generalize

$ q7 u; p: d/ ^9 H: H; K- `

investigate

9 S' ~7 A- J" I: {

$ I1 H! G' F+ f: l

) ~& h9 B3 x' U6 P" T- L

8 N1 ^1 P2 T2 |* |. n) j( E, W3 @/ J _7 Y. e2 n7 z. a, Y; _# l8 |9 E/ X& T( n- {+ m$ k* ?$ L
4 m) {: \" U0 L3 w. E+ r
9 N- I1 F* x) [ p% O1 R4 S

paper

/ C# r% O K8 ]

note

7 o+ |4 U% L& j$ d# `* M8 ]% | ! }" R0 P, L& M. y. x5 r/ w }$ g9 y: ], @2 \+ F2 |. O% o0 q" a7 F+ }; l; E; a( O. a# i
7 Q, H5 ^' q$ u/ q& u8 L
! T8 x4 Y. V; p9 g

aim

" O: l& T% K3 n7 ^6 g0 J

object

- S& x+ h3 v/ H( N- S; T" r. v7 \

purpose

The of this is to … ' f) b% s' j' l" _. G. a: t

3 C; y( T1 {9 J$ d; x, Z5 J/ D* w" \

& U+ u3 }, k) J b+ [8 I' P0 t

8 D; {, u; v- E3 z8 W9 Z% _

; C& V5 o5 f7 |$ B

$ C/ R! w _) i- m9 r' e! f

" i; I' F' x: P$ V. ]

6 v) Z7 ]: Y$ G3 P4 _& J% x

! K# H" p- c) d8 M

5 M1 P$ Y' `/ S3 x% e3 g8 ?

" u5 G: A9 j& ~0 I7 e# X" [

. `7 \2 g2 H6 d

) U, M. B, b; Z

& D0 U0 Q1 T$ k! {9 m, A' Y; c7 X: e

5 S' W1 e# x* f6 c

9 f% a A4 I8 i2 J

3 R* \9 t- B' c m( `: L

+ [. p6 f9 W) N. o3 U0 I ?

, k0 U7 a) K5 d, i; R3 [- J

& H9 H. U. B6 `9 R

/ J' x5 g! B" N* O/ W

0 h) {2 g# S% W/ X5 L, u) `1 P

0 c0 i/ _- l8 B/ ^, {) m5 N8 A3 J/ H# L6 ]. s4 k' Z. j; y" y6 n
5 _4 N$ L& d' `" q
3 s5 R' W+ A6 s8 q

prove

" W5 y, [; |# Z4 b$ L

show

/ k$ i3 }4 _3 G0 Q

present

* k; O' Y2 Z. J% j

develop

* j# T. S- g6 X- Z2 K! l y

generalize

1 V) l8 v- x1 I5 {0 r

investigate

It is the purpose of this paper to 7 C: Y) y7 J. ^) x# t

# _1 ^8 ^! T) M8 Y1 Z* O

{( E- t4 L2 l& M2 ^: |; A% E

5 E, `9 z1 |7 X

& A% v2 Z8 |* y5 K! Z

) R" Q3 l- y* ], n' b

# l4 q4 q) E2 ]. H: X5 `9 ?

; y+ r2 ^& o7 A% H: ?

3 B! N8 |" a2 \

+ d Y: a @/ E3 \

. u9 C* s1 c$ v6 I; p9 G

8 J- o2 S) @. Q, ]" Y! Q! m) V

* u( \7 Z5 y7 E

' ^( b1 P2 H! L

: m& ^1 X' Y: o$ `5 p1 t+ y$ ?6 k

" K# Z7 e0 i$ E6 }# Z+ F

) C2 D' p5 M! s+ _/ p; }

, K. c3 n R/ z

7 U( I9 a( N W! e

6 |6 c9 z8 M+ c- y5 ^% z

) Z; B! F# ^+ |6 Z

- R8 g0 `4 B- E$ W) y0 s j

6 B" n4 `: \2 D8 ^/ X* V+ b6 i8 |5 \5 l0 I" Y, u ~0 ?* ^/ g: h
`, d7 R& r4 i/ K
, H- ~8 T* m! h |2 S8 \2 D3 f

is concerned

( R) T* D& e! w. B

deals

This paper with… 9 N4 S1 d+ ~. }6 _ f% J% }7 x

, M1 l4 H5 v3 n9 {: v' o3 p) z, Q+ E" Z

1 p3 L5 {$ J L/ v

! g& P: _8 s( H

9 ?( v& Y/ X) D) r2 Q3 ^- ~

( t& C* n# A# ^

3 |6 W+ H8 H: ~& m$ \3 w

& l7 a1 @0 l1 c& I: S

$ }& R1 T1 M% c4 ]; ?, t$ T

' f" L+ k8 h; U; K; v3 t

6 y# i M# J# J6 P( S- C! U) R9 w3 B$ M% Z( ]0 }: M, H1 `; G" L# N4 D& U' w3 W1 s
; }9 _0 M1 E9 q/ D& e5 {% n0 U
+ S+ J# e& I3 k6 G3 Z& B

prove

) V8 P' W. i% x/ d8 P8 q

present

# {5 _& h) g7 E

propose to show

In this paper we … 9 `# w" o, _1 D8 l- T

! B1 M6 T9 j3 [& H. I9 h

- U3 r$ i. v% z6 f# Q

0 j. v; z. f2 l0 p3 f( f) M

9 _2 G% }5 w, T

/ ?# h h6 z5 L0 `, q

9 b* f2 D9 a0 X. j- E. L

' ~% d1 ?4 ]% G

+ Y8 v" m) d- Y

) H. {$ r, {! ]9 E9 L, h

0 F. P- }1 b) Z3 n, l

/ ~; t3 j& N9 I( X( {8 i! s" p* ?

2.如果需要简略回顾历史,然后再说明自己文章的内容,则可参考采用下面句子。 4 }5 m$ R- s" ]; W2 `

! }5 g1 M$ w' Y% X; `6 L

2 _' A# L5 a* u0 @

The problem…was first treated by…and later…improved by…The purpose of this paper is to prove that it holds in a more general case. # \! M8 P) G ^; l

1 a0 K5 Y) U- C l

- r7 w- D* `0 \9 }

…first raised the problem which was later partly solved by…We now solve this problem in the case of … . \; X1 e9 ?; t [# K

2 F* K! t+ @' E- d8 s; G% e

5 u! K" r# e3 |4 H* M: U2 O3 n

3.如果文章推广了别人的结果,或减弱了别人结果中的条件,则可参考采用下面句子: . R% t X: p! \8 X

$ U& S- S0 d' v5 V- Z1 \

4 p4 s9 V$ p0 e/ ]# m1 u3 @5 @

The purpose of this paper is to generalize the results obtained by…to a more general case,i.e.,… 2 y7 [0 c/ f4 g# ^5 V+ I# N4 n

, U, D+ p+ h7 e) u) B. ~: U6 T

6 w0 {9 g+ ]% ]* n

In this paper we shall prove several theorems which are generalizations to the results given by… 6 o# d" c% Z2 [' n0 m

3 ?7 P7 G7 E2 p3 X( M

& l# n% H6 O! y

This paper intends to remove some unnecessary assumptions (e.g., regularity) from the paper on… ) _8 P Z5 t! v! H

?$ v9 o, F. |" m j2 k

. {& L. j+ h3 ?& K

This paper deals with generalizations of the following problem… - b/ W; L6 V/ N' u0 \3 d; ?6 r6 w

, c/ S/ o7 O, E' f" c) x

0 h) S: R4 g+ F% z/ ~

This paper improves the result of…on…by weakening the conditions… 2 K' |" ?2 `7 h( t5 X* ]+ C

0 Y5 [; }; D4 I6 e1 s" S

2 ^# m" E3 x6 W

例: v% K" W1 y6 Q5 B, }3 K

& Y( I7 x, S! h5 r* N

; t0 o. a* b' w* ~) Q7 {; s- p _

It is the purpose of the present paper to point out that certain basic aspects of information-processing systems possess dynamical analogy, and to show that these analogies can be exploited to obtain deeper insights into the behavior of complex systems. # t$ y* X4 N+ x" q. W+ P

% `6 ?; W& { h# j j

; H; ~0 Z5 V2 L/ m

We present a general comparision principle for systems of boundary value problems and employ this result for proving existence and uniqueness of solutions, stability and existence of periodic solutions for non-linear boundary value problems. 3 v! q; ], y" V) O: I+ t

' e* U' o/ z; B* j

7 a6 L# m0 \% T0 R

We proved a theorem for generalized non-expansive mappings in locally convex spaces and extend the results of Kirk and Kaun. We also obtain a theorem which generalizes the results of Brouder. ) H; k+ Q( t5 n1 B2 t

2 \2 u: Q: A- W* k) k- S, l5 Z

9 c% `! L' f) e$ P; g! M5 m

This paper is concerned with the existence of multiple solutions of boundary problems for the non-linear differential equation of the form…. ( X4 V; a& m _6 C) G

/ T/ u% |5 f7 B: S' P- ^

, P7 ~) l! l- V8 [; q- c8 H

This paper is concerned with the question of local uniqueness of solutions of Cauchy Problem for elliptic partial differential equations with characteristics of multiplicity not greater than 2. 6 n& P, E( @' J1 Q

6 D0 |9 G, D6 G }$ M, D

' j3 N5 h: F) Q7 D& b0 V

The object of this paper is to investigate the behavior at the boundary of solutions to the uniformly semi-linear equation… ; U8 f! t( |6 F) P( C

3 t* K+ A8 J) y0 N) {) V6 [

6 L I9 l% M" W" c( Q# A

The aim of this paper is to try to minimize the functional % {6 w$ F: P+ m+ g

0 L$ d7 |( l; e) m

, f% r5 J- z4 q

0 `8 S5 M( d5 r8 K, N' I+ Z

* C9 Z1 y+ K! p; N; [- x, |

/ ^. u9 d: x% S% d( N2 q$ T

over the class of all absolutely continuous functions f(x) which satisfy the boundary conditions f( )= ,f( )= . ; u; Y# F9 T& F: A) A

点评

kittygoodice  很棒的东东  发表于 2016-1-20 20:08
天光li  ding~~~~~~  详情 回复 发表于 2014-2-6 20:32
mongo1992  顶一下  详情 回复 发表于 2013-1-19 09:59
回复

使用道具 举报

风月晴        

0

主题

2

听众

39

积分

升级  35.79%

该用户从未签到

新人进步奖

回复

使用道具 举报

布赖        

4

主题

2

听众

134

积分

升级  17%

该用户从未签到

回复

使用道具 举报

satre        

13

主题

2

听众

228

积分

该用户从未签到

元老勋章

回复

使用道具 举报

rankvic        

12

主题

2

听众

168

积分

升级  34%

该用户从未签到

回复

使用道具 举报

summit001        

1

主题

2

听众

27

积分

升级  23.16%

该用户从未签到

新人进步奖

回复

使用道具 举报

hxo1202        

1

主题

2

听众

41

积分

升级  37.89%

该用户从未签到

新人进步奖

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-7-19 07:50 , Processed in 0.856585 second(s), 102 queries .

回顶部