QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 6237|回复: 1
打印 上一主题 下一主题

十大算法介绍

[复制链接]
字体大小: 正常 放大

15

主题

12

听众

328

积分

升级  9.33%

  • TA的每日心情
    开心
    2014-8-31 14:51
  • 签到天数: 70 天

    [LV.6]常住居民II

    新人进步奖

    群组数学建模

    群组2013年第二期美赛论文

    群组全国大学生数学建模竞

    群组数学建摸协会

    跳转到指定楼层
    1#
    发表于 2014-1-24 15:42 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    一、蒙特卡罗算法
    3 T' h* Q. K- U+ \% E1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis. u0 e0 [; }# w. ?+ ]9 [! E
    共同发明了,蒙特卡罗方法。
    4 \1 t% e, A/ W. a, D此算法被评为20世纪最伟大的十大算法之一 。1 o+ C- j& u# D$ X9 D! I
    蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
    $ c8 Q( N% r# d$ i% a, ?8 X4 u蒙特卡罗方法的基本原理及思想如下:4 `2 v( Y' M* M' n0 J  j, n
    当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 1 |% D3 c4 \4 {9 C8 z
    有一个例子可以使你比较直观地了解蒙特卡洛方法:3 v4 j" n% `! R8 s
    假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。
    # q( R) ~% W: Y: S8 V* Y) m# w在这里我们要假定豆子都在一个平面上,相互之间没有重叠。
    8 U" J' p5 I5 G2 b. K' R5 ?0 K. L8 L! j' P  i
    蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。" e  f# F1 x+ F) X

    ; a& G1 S" k( |! P) o8 E8 T1 a8 {- J. q蒙特卡罗方法与一般计算方法有很大区别,一般计算方法对于解决多维或因素复杂的问题非常困难,而蒙特卡罗方法对于解决这方面的问题却比较简单。其特点如下:
    ; W# _' G2 J6 JI、  直接追踪粒子,物理思路清晰,易于理解。 , T- A& F/ ?- B8 x# b
    II、 采用随机抽样的方法,较真切的模拟粒子输运的过程,反映了统计涨落的规律。
    ! m: S" t, z" W- T* uIII、不受系统多维、多因素等复杂性的限制,是解决复杂系统粒子输运问题的好方法。等等。+ f9 {! y/ I# ]. S7 k
    二、数据拟合、参数估计、插值等数据处理算法
    $ z- Q0 D# c4 l, {: s  U$ r我们通常会遇到大量的数据需要处理, 而处理数据的关键就在于这些算法,通常使用Matlab作为工具。数据拟合在数学建模比赛中中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98年数学建模美国赛A题,生物组织切片的三维插值处理,94年A题逢山开路,山体海拔高度的插值计算,还有7 p* ?/ w! |+ i& O- {" H
    吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在 MATLAB 中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。
    / b+ j9 F3 o1 x6 o, W三、线性规划、整数规划、多元规划、二次规划等规划类问题
    2 f& _0 S% j; y: R4 x数学建模竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用 Lindo 、 Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。
      @( s. O  D8 U+ S5 E5 Y. j3 T四、图论算法
    3 C1 K2 p" k1 S, c3 d' x2 Q这类问题算法有很多,5 N2 |6 A8 j# I
    包括: Dijkstra 、 Floyd 、 Prim 、 Bellman-Ford ,最大流,二分匹配等问题。
    & U! R  s1 M& |4 m; r- J# f* g关于此类图论算法,可参考Introduction to Algorithms--算法导论,关于图算法的第22章-第26章。同时,本BLOG内经典算法研究系列,对Dijkstra算法有所简单描述,
    ! W  Q; E) g/ A5 a* W: _7 A经典算法研究系列:二、Dijkstra 算法初探。
    , `4 i: [' t% L6 {8 y# m8 P五、动态规划、回溯搜索、分治算法、分支定界等计算机算法
    / w/ T# A( s) q  U$ F$ l在数学建模竞赛中,如:92 年B题用分枝定界法, 97年B题是典型的动态规划问题,此外 98 年 B 题体现了分治算法。5 Y! ?, o3 }9 u! r% z
    这方面问题和 ACM 程序设计竞赛中的问题类似,
    $ Z4 E7 j6 E5 R% q; q+ d' y. V推荐看一下算法导论,与《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
    , C: p; l+ R% l6 _六、最优化理论的三大经典算法:模拟退火法、神经网络、遗传算法 0 t/ p1 L/ K. b9 D- w
    这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。* ]5 k9 n7 Y5 P/ g5 C: o+ E
    在数学建模竞赛中:比如97年A题的模拟退火算法,00年B题的神经网络分类算法,01年B题这种难题也可以使用神经网络,还有美国竞赛89年A题也和 BP 算法有关系,当时是86年刚提出BP算法,89年就考了,说明赛题可能是当今前沿科技的抽象体现。 3 C( P' H: [3 l: [6 z
    03 年 B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。 ! g: ~5 l! l9 W2 W1 P: q/ ~
    另,本人对人工智能非常感兴趣,遗传算法已在本BLOG内有所阐述,
    ; H. B2 F4 Z6 ?  R七、网格算法和穷举法
    " P' P) l7 ]- l4 }( T网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在 N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在 [ a; b ] 区间内取 M +1 个点,
    " V2 z: C0 p% T! l5 G4 O就是 a; a +( b ? a ) =M; a +2 ¢ ( b ? a ) =M ; …;b ; w( M) O- v+ h+ k3 m% g
    那么这样循环就需要进行 ( M + 1) N 次运算,所以计算量很大。 ) X& ?; M/ d- {3 e9 H6 s
    在数学建模竞赛中:比如 97 年 A 题、 99 年 B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用 MATLAB 做网格,否则会算很久。 9 h! ?* h4 b) [2 T1 U: k* n
    穷举法大家都熟悉,自不用多说了。   
    + u, [$ N8 A, T1 ]  K八、一些连续离散化方法+ Z( x: g  |0 `7 M  c# H
    大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。  
    6 S8 N) G) V4 Q5 M3 ]; y5 d九、数值分析算法4 I* M7 t- |( Q1 {
    数值分析(numerical analysis),是数学的一个分支,主要研究连续数学(区别于离散数学)问题的算法。如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比 如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。这类算法是针对高级语言而专门设的,如果你用的是 MATLAB 、 Mathematica ,大可不必准备,因为像数值分析中有很多函数一般的数学软件是具备的。
    : y' _* ~2 m9 {3 K  w( l$ s十、图象处理算法
    5 L4 P9 z9 W& _5 t: C4 Y( Q% F' [% d在数学建模竞赛中:比如01 年 A 题中需要你会读 BMP 图象、美国赛 98 年 A 题需要你知道三维插值计算, 03 年 B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    15

    主题

    12

    听众

    328

    积分

    升级  9.33%

  • TA的每日心情
    开心
    2014-8-31 14:51
  • 签到天数: 70 天

    [LV.6]常住居民II

    新人进步奖

    群组数学建模

    群组2013年第二期美赛论文

    群组全国大学生数学建模竞

    群组数学建摸协会

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-29 14:32 , Processed in 0.462831 second(s), 54 queries .

    回顶部