QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2213|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    0 N" i: w1 t* T# Y2 G: M8 `
    ; @( {% F0 {1 K% ?/ w$ K6 EQ5:=QuadraticField(-5) ;- G2 Q2 d! s: M1 y* Q( ^. \
    Q5;. D- W* K) u) f8 _2 t1 F5 t; ^  w

    & N2 D+ r. m- {6 R( d0 v1 P' v3 ]Q<w> :=PolynomialRing(Q5);Q;( V9 @  v4 H; F3 J, Q0 S" i
    EquationOrder(Q5);
    1 d$ q! j! a9 i" s7 v- U& qM:=MaximalOrder(Q5) ;  U/ m0 z7 W% |1 R: N1 p
    M;
    * ^/ e: p4 o; H& g+ b: jNumberField(M);
    6 q* s, j' N5 N- v# B3 E$ t" PS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    , l" G4 h/ E$ O/ Q9 SIsQuadratic(Q5);7 c# d2 h) N: U. E+ u  V1 c2 m
    IsQuadratic(S1);
    ; y( S& S' c7 ]IsQuadratic(S4);# U% G3 d' E# l6 M7 U; D$ E& v
    IsQuadratic(S25);
    9 x: F% ]- R: S$ WIsQuadratic(S625888888);
    , v3 O1 \! B! c2 x( uFactorization(w^2+5);  
    0 m  O- I- k. xDiscriminant(Q5) ;2 [( ]' ^. h* x+ d9 X3 l) z
    FundamentalUnit(Q5) ;7 _% b! T. ]; ?0 |) h
    FundamentalUnit(M);: d1 a* K  c5 S( F* O6 [
    Conductor(Q5) ;6 f9 ?& x3 X7 D6 z( v" Y2 G; h
      f1 h( l; C1 ?+ M4 t$ @
    Name(M, -5);
    3 ?: @6 g8 v  KConductor(M);5 m( ^9 [6 r# }
    ClassGroup(Q5) ;
    " J5 w( }% _1 U1 @ClassGroup(M);3 F/ z. r) {" ]
    ClassNumber(Q5) ;0 Y5 v/ `! h# R8 W6 F8 p* l" R
    ClassNumber(M) ;
    1 r7 X, B$ A0 l8 D, T( _& Z# aPicardGroup(M) ;& q) N2 m0 p' z
    PicardNumber(M) ;+ a# ^5 [4 W1 w. U* o
    $ C. a1 v: ^, |6 \2 R% H# G: t. [9 l& W
    QuadraticClassGroupTwoPart(Q5);& `, l$ G) @3 O3 o" F5 K5 o7 t
    QuadraticClassGroupTwoPart(M);
    4 J" \% z0 R, c0 gNormEquation(Q5, -5) ;
      o$ X4 H* v" A6 U# O4 MNormEquation(M, -5) ;& Y, {/ [- |2 R) ~+ D8 B. [0 F& P
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field- _1 q% R0 a3 a
    Univariate Polynomial Ring in w over Q5) n0 ^, Y! R' M. v, U$ @
    Equation Order of conductor 1 in Q5
    * ~; S2 e  v& ^/ [Maximal Equation Order of Q5; q% y5 s" V6 }
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field6 g* `# X6 M9 W4 e2 `
    Order of conductor 625888888 in Q53 ?" Q3 n( k3 P6 G- B% w  c( }1 \. |
    true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    $ p! l4 A* D5 [/ i& O6 jtrue Maximal Equation Order of Q5# v5 {! G: X5 U4 C% L" C# w$ P
    true Order of conductor 1 in Q5$ J! ^  V2 `3 l# f
    true Order of conductor 1 in Q57 C0 a5 ?; ^' R% F
    true Order of conductor 1 in Q5  k3 |" x" U2 u2 n. U9 ^
    [# m5 K+ G9 Z, B
        <w - Q5.1, 1>,2 e) X  `( v0 @' C: D5 a0 C
        <w + Q5.1, 1>* E, l6 |. I5 }+ G! i- A
    ]- V# W' u$ l8 r6 U, m4 y
    -20
    $ _. H% f+ q% ]+ H; _4 X) s/ a: s, h0 j3 _5 i; J( C2 S6 ]
    >> FundamentalUnit(Q5) ;+ L6 w: b" b1 [+ E; B3 M
                      ^
      |+ D! T. ]5 i* W' e) ], `Runtime error in 'FundamentalUnit': Field must have positive discriminant  P4 O6 B# @# L, X/ |0 K

    , L0 |8 B. W' Z. I8 v% q( c7 O2 v
    1 p; f9 Y: e1 j! T: ]& o  Z>> FundamentalUnit(M);
    ) j/ [4 t3 y/ J% P* K1 m                  ^5 n4 c+ C. y/ K$ b* v2 \$ u) o
    Runtime error in 'FundamentalUnit': Field must have positive discriminant- F+ R# ]  {# t* X
    ) M; Q8 \% m, ~% m5 c
    20
    $ ]( z' L1 ?% L* w- D4 o! D7 _% d8 o# W* S+ m4 ^6 n! z0 D! }
    >> Name(M, -5);" Z  _5 t- L6 c* L2 a! {: y
           ^
      g, w6 ^* J. B* u2 h" ERuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]
    0 }0 \% {5 j0 J- [0 A, O# ?2 P: \! D6 d& C+ ]5 `
    1
    8 x% h' e0 g1 ?( K8 sAbelian Group isomorphic to Z/23 j& K7 |) C  M# w4 G$ n
    Defined on 1 generator
    & h3 X( \- `+ Y7 j8 IRelations:
      I0 g7 J. l4 Q. t- ?& x3 d( G    2*$.1 = 0
    ) G1 h  `- }" ?: F5 kMapping from: Abelian Group isomorphic to Z/2( A2 E/ _& L* v  L& X
    Defined on 1 generator
    # N) a3 L1 E0 t+ k: a- NRelations:
    0 j) S( m9 ?6 |0 `# z4 J  \    2*$.1 = 0 to Set of ideals of M
    % l! a; v0 E% |% e( F$ NAbelian Group isomorphic to Z/2
    5 f8 S9 s" k" f* v3 c# ?, _Defined on 1 generator
    5 z  E# v% b0 uRelations:
      {+ w2 @+ A# T: ?    2*$.1 = 0
      e; f: y: k! p% t9 Z- @! fMapping from: Abelian Group isomorphic to Z/2
    $ I2 r/ R# r, }Defined on 1 generator
    0 O  J" l) U; j' B1 ~7 LRelations:' `/ P/ v0 b9 K1 w3 F- H2 e+ W" W
        2*$.1 = 0 to Set of ideals of M
    9 o  i! h) H  _: Q2 R, A2! |1 H# L! F- f
    2
    + F- c; P9 j1 c- b# XAbelian Group isomorphic to Z/2! h/ K- q4 I8 }  _% I, o+ z
    Defined on 1 generator1 h, V7 @! \6 P$ d- K1 r
    Relations:. _0 u% D3 f9 V# }9 a
        2*$.1 = 0; w4 u) J1 q8 |  @
    Mapping from: Abelian Group isomorphic to Z/28 z4 n) C; ]9 C! w# P
    Defined on 1 generator
      h7 O( n! `. A1 WRelations:
    9 H0 V. u3 I8 V5 E1 {5 R; b6 l    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    / B  I+ j! n( W* Z' P2
    + x4 k7 \0 [. ^, ZAbelian Group isomorphic to Z/2
    - G4 [8 j' ^' Z- S; }- E$ FDefined on 1 generator/ ~- g  s* _& ]9 U8 Q5 Z0 X
    Relations:
    * n: E+ Q! X/ C& R    2*$.1 = 06 t" F1 ], a+ m9 F
    Mapping from: Abelian Group isomorphic to Z/2
    / G( k+ k9 ]  E' S* y8 wDefined on 1 generator7 c9 ^0 J" i1 t9 @2 \" Q
    Relations:
    2 J% G$ s, L5 i! B    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 9 t2 l6 B! ?/ y+ P) |- Y
    inverse]
    5 W1 a; M9 T0 N: l! wAbelian Group isomorphic to Z/2
    - F/ D" c, ~3 X0 }9 u6 l2 vDefined on 1 generator
      T( g6 [' ?+ V; S9 nRelations:0 l- }! _: k3 p9 B- f0 Z
        2*$.1 = 0- B2 p0 Q+ E) {( F2 _2 m
    Mapping from: Abelian Group isomorphic to Z/2) c0 h" o" {7 d4 R$ K! ^7 s
    Defined on 1 generator
    8 n" `0 y9 A0 a  D- R/ {( DRelations:
    ; d7 K0 p1 t; p/ ]( _, c' v    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no ' R6 @8 X% o$ Z& O/ e) q/ i5 j
    inverse]
    : m8 z+ v( e: H& g  \false
    $ u4 L- M, I2 f9 Z( @8 v9 ifalse
    % z( }) O! `6 g==============! Z" R2 B. `" U+ J2 t% h
    ; U9 U3 }# c; K- r) X- d7 }

    # l. Q* W7 B- \8 J4 e. p$ kQ5:=QuadraticField(-50) ;
    ; T( G4 q! ?" U- e6 q' lQ5;
    5 E1 F' d5 y# j1 ]: h7 Y: P
    " i. ~3 v+ F. v' UQ<w> :=PolynomialRing(Q5);Q;
    - [# d: X! M' t) {EquationOrder(Q5);
    / r5 O: X" ]4 o# x9 |M:=MaximalOrder(Q5) ;
    7 l6 e6 j! l: }, z- AM;1 G. ~! d$ b- ]0 l& v# S
    NumberField(M);
    . H* i$ ^- O% D% ^6 xS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    4 W/ `- m8 I9 x# w/ O/ WIsQuadratic(Q5);
    5 H- S* @  G! o: S& H% T* PIsQuadratic(S1);0 K2 R$ B$ \- W/ d; D
    IsQuadratic(S4);0 Y# i0 p' V0 N4 ]$ F0 z
    IsQuadratic(S25);
    " i5 R( Y1 J( O1 V2 J) B* }2 OIsQuadratic(S625888888);
    , w/ q; f* p$ U9 Q& }' H) IFactorization(w^2+50);  # W2 g% l* C' O
    Discriminant(Q5) ;
    - ?4 W! X# w( l( ^; e# aFundamentalUnit(Q5) ;
    % p* \$ q1 c+ D$ \3 ^2 w1 sFundamentalUnit(M);
    ! W3 `, s1 j* l: H. C7 E6 m7 o$ n3 rConductor(Q5) ;
    * J" N# C6 H. e( Y
    $ R: R) }& W( z- K$ P/ x7 D' AName(M, -50);. j, D, z8 }# V
    Conductor(M);
    ( b) ]* E; n" _! n4 y5 S: TClassGroup(Q5) ; 5 u1 n4 i, B: y6 o
    ClassGroup(M);
    6 a' `6 }5 k2 N" s  iClassNumber(Q5) ;
    8 j$ M3 g$ l& r6 n! g0 o% aClassNumber(M) ;
    9 r+ T" g% U2 I3 dPicardGroup(M) ;
    7 n. Y2 m- Q9 U: VPicardNumber(M) ;4 F: ^2 ]% E4 P0 a
    , Z( u* S8 p% B! k! r2 y/ k4 ]& G
    QuadraticClassGroupTwoPart(Q5);  [) `# o" ~. A
    QuadraticClassGroupTwoPart(M);
    3 S) w9 d1 a% m9 ]4 ONormEquation(Q5, -50) ;
    & z6 y6 o9 P. V/ r; g* ~8 g" ENormEquation(M, -50) ;( ?6 G# b$ P9 \% D, n, m! t$ {

    : r% v, f* t4 d: Q- i8 P2 r+ U  vQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field9 Y5 I* p" Q* o& y
    Univariate Polynomial Ring in w over Q5$ n8 C* R6 `9 B4 Y4 ~) C
    Equation Order of conductor 1 in Q52 l& D) d  q$ s4 T! {9 K. W/ ~
    Maximal Equation Order of Q59 [* [& x  R0 f0 A: U) @" V
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    # F$ S# M% [8 o! DOrder of conductor 625888888 in Q5
    + H0 M! V; q! Y" U5 L3 K4 itrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field. p6 m. L7 P, S" `2 n* d# k
    true Maximal Equation Order of Q5! b' o$ n! P' n9 @% u- [
    true Order of conductor 1 in Q5- J/ \9 r& I0 ^  E* T' q
    true Order of conductor 1 in Q50 V& P: X* P: T0 a5 l  E
    true Order of conductor 1 in Q5( W- X8 ^, L- s$ K
    [
    & @  r* \. m1 i4 ~- M& r, S    <w - 5*Q5.1, 1>,
    % T$ H/ x* C& {* h% R    <w + 5*Q5.1, 1>1 N4 N, Y6 u! i0 C" f7 K
    ]& J# t  ?. c( G1 ]- N
    -8
    " W! ^2 Q6 h/ h- H
    ; W' L% \$ n0 l+ m>> FundamentalUnit(Q5) ;( ^& T% F8 m- ~( _( ]' U4 q+ X
                      ^
    3 \) q! ~) A$ b: G9 }Runtime error in 'FundamentalUnit': Field must have positive discriminant
    % i% E0 r" t# Z6 l( N* |' v* |: ^
    . u5 k) e1 E3 p* j& j& i8 {; X+ m5 A$ E, j
    >> FundamentalUnit(M);
    4 ^: v! c3 r% R$ G                  ^
      G/ f9 m% `2 J0 lRuntime error in 'FundamentalUnit': Field must have positive discriminant
    # Y6 }" }* M9 _, l: e0 f
    1 @) b- }( I- Y8
    2 \2 |$ l$ r; {# @( B* j4 V7 o# c; o2 s3 c8 ?
    >> Name(M, -50);+ z& S' i7 F/ C+ z. C
           ^7 ^% G! S6 d2 T$ p$ ], B  f9 [
    Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]
    ) k6 \9 m/ t) |8 W6 {; Z+ T1 W# B- s; x9 n5 a3 p. s1 ?9 N
    1
    3 z+ R0 I$ P& N3 t8 T7 M* Z5 u8 ?Abelian Group of order 1. w0 K5 c2 j' Y# `
    Mapping from: Abelian Group of order 1 to Set of ideals of M3 k$ [) P: H& ]$ o1 L+ P% j. K3 f3 y
    Abelian Group of order 1
    ) k9 d* R) J8 L7 w/ lMapping from: Abelian Group of order 1 to Set of ideals of M
    0 Y5 g* s: U$ t7 t  k% d+ y+ ~1" a* e0 b  ]+ G  m0 \
    1
    * Q( o5 h& B$ t2 f1 K, A' x( xAbelian Group of order 1
    - x" T; q% d/ i2 ^' m; AMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no6 v0 q  d3 Q# u# F5 @5 _
    inverse]% G0 P1 m! b" d5 w
    18 ^! T8 ~8 Q+ W* `; c  v1 k
    Abelian Group of order 1) D1 `3 Z. l: l& C
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant' n3 `  M+ m  U# L( `3 X7 t0 _
    -8 given by a rule [no inverse]3 f$ t) M* n! c  ^8 S% v& {
    Abelian Group of order 1, r. b# l, Q* g& R2 S
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant. P0 A9 h# N, B/ T/ J
    -8 given by a rule [no inverse]) \) P& ~4 o7 A! w! i7 ^
    false
    . ^/ a( v* E/ f; }5 zfalse
    : l' _" g4 T' G( l* r
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    : B; u0 q7 Z/ m% i8 X, ?- I6 `: s' h
    Q5:=QuadraticField(-1) ;
    + x& V7 e7 }, t2 M2 }Q5;
    5 v( Y5 w( S$ y9 N# `, j3 ~- h( n  R5 L+ {) f1 H3 ~
    Q<w> :=PolynomialRing(Q5);Q;
    7 L2 d) l& z6 _1 e- KEquationOrder(Q5);4 h; |- l( u! N8 L+ l  k+ L
    M:=MaximalOrder(Q5) ;
    8 H! r, G+ `9 O5 t$ c+ P6 C4 O( {M;
    5 @9 n* [! ~; qNumberField(M);
    2 a( p8 W  }( ]5 |' y3 Y' LS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;) L/ r9 Q4 E# D7 @% I+ c1 _6 Q
    IsQuadratic(Q5);
    7 y: Q, D" }% W7 z& c0 TIsQuadratic(S1);
      w2 D' w1 L6 ^+ T; DIsQuadratic(S4);4 b- n8 Y8 T$ e3 c
    IsQuadratic(S25);
    : A% Y% |& v" @5 dIsQuadratic(S625888888);
    ) a2 c) ]& l! p# L; I! \3 WFactorization(w^2+1);  
    7 t( _' [2 y6 z- a% s- S- O& M. }; qDiscriminant(Q5) ;
    . C( y/ ]2 z4 j6 R  n3 E: W5 d  Y& zFundamentalUnit(Q5) ;1 Q/ q* T& e2 k0 E7 F- f
    FundamentalUnit(M);
      F7 t) h# Z5 IConductor(Q5) ;! O* I' w0 c0 u, }+ _9 U

    ( Z5 w3 Y5 P8 Y3 m8 j0 yName(M, -1);
    4 o" j3 @9 V( UConductor(M);& B' Q1 s3 f( ?3 E  B
    ClassGroup(Q5) ;
    ' [' [& j+ i" L" TClassGroup(M);7 c; O3 N/ Q- j( Z
    ClassNumber(Q5) ;
    - d$ D" }0 }# s: v- ?; jClassNumber(M) ;( o0 P; n! [9 p4 a# z
    PicardGroup(M) ;
    $ k! Q6 H; K) KPicardNumber(M) ;5 B) b/ m1 N+ Q' b4 V0 [( P8 S7 r
    0 M% x: u5 q* M; A
    QuadraticClassGroupTwoPart(Q5);4 p) q+ ~( @6 ^
    QuadraticClassGroupTwoPart(M);
    5 j$ V8 Q# ~0 y, i7 R, d/ {% }# M$ INormEquation(Q5, -1) ;$ {: @& d" ^" d# L- t3 \3 w
    NormEquation(M, -1) ;9 p& a  H, f( k
    5 t3 y% g" x' k6 c7 X0 \8 {
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    3 E/ g4 M1 t1 G5 b$ _Univariate Polynomial Ring in w over Q5
    & t% q( |6 p# u: q  V1 BEquation Order of conductor 1 in Q5
    $ w9 r3 r9 {) H9 F4 vMaximal Equation Order of Q5
    & I. H- {- L, A! F# `  @) B9 rQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field+ h( u' Y; s: l/ i3 z% T
    Order of conductor 625888888 in Q5
    ' l' I, a4 E* Btrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field, D1 E1 h3 l; g$ y& H' z. X1 G
    true Maximal Equation Order of Q5! s/ J0 J, w/ v9 y
    true Order of conductor 1 in Q5
    * N3 m) u: q# x3 C' y$ Ztrue Order of conductor 1 in Q5" q& r" [( b1 q  n4 R
    true Order of conductor 1 in Q5
    : k% p. k2 J" E* T! Z7 c  c[5 G5 A0 Y. P& t& u1 E' e3 J2 k: d
        <w - Q5.1, 1>,5 R2 r: n3 A/ K+ J$ \( ~6 u
        <w + Q5.1, 1>, s6 J0 E7 L: ~% \! X
    ]
    3 R' l& Z6 V) ^9 t; a- g$ e+ _  d  D-4) F; w3 {/ X( r7 ?7 q
    0 h& D, }( D2 F% z
    >> FundamentalUnit(Q5) ;
    # B( n  @( z8 M3 z0 a  s3 Q                  ^
    , v- w4 ?. l" v9 S8 _7 MRuntime error in 'FundamentalUnit': Field must have positive discriminant
    " i. z# J0 n3 g' M& `$ P% I& [/ [7 h- s: ]0 h
    ! ?$ k, L  Y! X! b& Z& ^( L& ^8 i# `
    >> FundamentalUnit(M);
    ; v0 y2 U! g" [$ ?, `6 U& U* t                  ^1 m5 v7 V8 ~2 |  j6 o  f
    Runtime error in 'FundamentalUnit': Field must have positive discriminant) M4 c' \7 a0 d3 b, G0 l* s  ^

    7 K1 R2 u5 D, P0 K- U4
    , ^5 e1 I: P! N% y
    ( v" B  C. d+ W! P>> Name(M, -1);7 M' S- ~" ?, H( g
           ^
    ) H! u0 `! t* R1 F8 \" J# c3 nRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]0 p; K# z0 ]0 A  s
    7 a# u0 C( g+ J3 C1 F
    11 m+ m- `4 r, B/ h! j; Y8 N) i
    Abelian Group of order 1/ a& e! C) `1 f
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    / `# S7 ^0 O7 Q/ t* G( \7 |, SAbelian Group of order 1* Z  v6 t: c% R- A) M- O' _, ?1 {
    Mapping from: Abelian Group of order 1 to Set of ideals of M3 v$ C( N! ^% {* K) j: U
    1
    ; `8 Z0 Z6 p  u" H1 b' p12 }0 m+ V- J8 L& M
    Abelian Group of order 1
    3 }1 d7 K; X- n- u4 k/ W/ ZMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    $ t6 m4 y" r% j4 V" pinverse]
    ( ?+ t( P9 r9 M0 a0 b, R. n1; n' n" c8 H$ i& b/ d% z6 d
    Abelian Group of order 10 ^, M" |; S! X+ @, |- y3 }
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    % ~1 h1 j! m9 z! G8 s4 T-4 given by a rule [no inverse]
    ( G" f8 O2 ?* n: [' LAbelian Group of order 1
    3 o" X! f7 p  S/ I8 X! T" IMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant* Y8 O$ k9 @0 I* c" p( i: d/ {6 O
    -4 given by a rule [no inverse]$ O" W, \: s9 |5 E3 V0 ^: E
    false
    ! \8 l9 ]9 Z) @1 Lfalse
      h! _3 X, j# b/ S! |  @2 c===============- i; r0 j! r. g- ]7 C( L! A
    9 \( h* t0 |7 s  U
    Q5:=QuadraticField(-3) ;
    ! n. n7 H) E/ h* c  s. H" \- bQ5;( ]' G/ _* l+ E% t3 d- J
    % R. B" z+ Y+ x5 B
    Q<w> :=PolynomialRing(Q5);Q;- Z! w* b# C( e$ c: L8 v/ y5 V
    EquationOrder(Q5);
    ) ]" L- ?/ r0 f5 Z& p6 A* rM:=MaximalOrder(Q5) ;
    ' n" ^: j. y, Q- h& |& q& ^M;) @7 b! Y4 b. ]# Q  v2 e* e' y. }
    NumberField(M);
    ) R; \, f' ]8 R# D8 m/ V1 US1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    * S2 b; ?9 b# H9 ]$ z/ C: R, pIsQuadratic(Q5);9 b, A! _1 ~! I* u' r% X5 k
    IsQuadratic(S1);
    " J: X) j% ]2 M5 ?2 WIsQuadratic(S4);
    2 _+ ~5 o1 q; C1 T# RIsQuadratic(S25);8 t. C% v# S" L
    IsQuadratic(S625888888);' b5 w3 H! `( ]' C+ d4 f% x' K
    Factorization(w^2+3);  
    4 f% j1 ~. Z; ]& m  T. w1 yDiscriminant(Q5) ;
    + F# l! E* Y0 D) g4 Q* xFundamentalUnit(Q5) ;* M4 a0 B! `7 z6 q7 {6 I, s; t' Q( I; M
    FundamentalUnit(M);, K+ a2 g6 G& y( ~& I; |+ b
    Conductor(Q5) ;
    * ^& s( `7 L/ e* ?- d6 w5 F; u+ ^9 ]3 o& L; R" {% a6 U
    Name(M, -3);
    0 F0 ]( Y# c( @  Z5 w* O4 kConductor(M);
    ! b! T- Z. Y# K1 `2 s$ RClassGroup(Q5) ;
    8 D8 E# o! F/ M% o0 LClassGroup(M);* Q7 H- C$ E$ w# H5 e
    ClassNumber(Q5) ;
    , z" t  {! z+ u& D  NClassNumber(M) ;
    ; `7 Q" V  `5 G5 gPicardGroup(M) ;
    3 Q1 s7 V& p# D5 G1 M  wPicardNumber(M) ;
    / V* j4 T0 ?- g2 [: O* f
    5 w. r! g9 }3 o) {+ g( D. f5 k2 ^( ZQuadraticClassGroupTwoPart(Q5);6 `$ \. R9 R0 [+ {
    QuadraticClassGroupTwoPart(M);0 n& J. u( b( l9 T- r
    NormEquation(Q5, -3) ;: F' c+ @( l( e* o$ m. |; N( x7 b
    NormEquation(M, -3) ;9 N2 U7 b% [' A4 _& h

    ! a. C7 Q9 n6 [; O5 q; ]' n: \& e$ gQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field1 {# O/ E7 q+ I5 I3 ~& U" z& G
    Univariate Polynomial Ring in w over Q5" h; z  M6 B9 {5 Q& ^9 p& x
    Equation Order of conductor 2 in Q5
    , ~! k6 h1 b5 a+ L/ M. _Maximal Order of Q5" x. E8 ]! Y% w( w
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    & `6 b- n0 M: F/ I' e+ b4 @& jOrder of conductor 625888888 in Q5
    ) M) s/ K+ X% _4 ztrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    ! R) F- n- V" {- ], z% h3 s0 Gtrue Maximal Order of Q5
    : ]" R& E  {  L  M! f, ?true Order of conductor 16 in Q5. ]: c7 M: c" F1 A: b) x8 Q
    true Order of conductor 625 in Q5& A, Q& L: D; c
    true Order of conductor 391736900121876544 in Q5
    ' b7 v: H) r: ^6 {[0 u4 y* f1 X- e, P; r1 O" a. [
        <w - Q5.1, 1>,: v6 J. r+ x; H- s- J% }. w8 E
        <w + Q5.1, 1>% c9 s* f$ f+ t
    ]
    ) @) S7 s1 x" J; ?-3
    " Q  q( V* m  y2 x8 Z$ m7 N6 x4 m, u, `. T: V0 C0 f
    >> FundamentalUnit(Q5) ;
    ' \8 R. A1 D6 I1 m: T# {! }3 H                  ^
    / G9 o& D( Q7 ERuntime error in 'FundamentalUnit': Field must have positive discriminant$ R) M! F+ q6 M' P4 Z( g
    / ]& w+ t# A; ?' a9 l

    & ]- @: f0 \" u6 ~6 Q7 m>> FundamentalUnit(M);" I4 u5 q4 G2 U) m
                      ^9 F6 F- b7 F) g9 ?- v+ @
    Runtime error in 'FundamentalUnit': Field must have positive discriminant% h. g2 e8 B4 P: N' j
    2 i; u! T! ~/ \! D( g7 P! N: X
    3
    % h. n4 |) i- S/ ?) v+ V3 c! u4 l5 j* r+ a0 }7 I0 b
    >> Name(M, -3);
    $ N+ w% P: X8 P, [6 i+ q       ^
    ' x, a6 M6 U1 iRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    7 \! i; \1 M4 [1 I2 E$ Q' D
    6 h5 R1 i- d8 m! @7 X9 i$ X1
    : T8 V+ y/ Z8 Y! k, cAbelian Group of order 1
    3 E$ `. @4 q) ]) I- w4 k0 yMapping from: Abelian Group of order 1 to Set of ideals of M
    6 s  |. x# E" D" c% Y9 _( PAbelian Group of order 1
    8 |3 `1 v; M5 P5 d& V3 cMapping from: Abelian Group of order 1 to Set of ideals of M
    0 h7 H/ ~* Q: B. t" B" _1* B! a! L6 J. O% d( V5 u! f# j
    1
    ) T! [+ }, X4 IAbelian Group of order 1
    5 m& u$ ^8 z, ^7 J" l  hMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    3 J1 d) d/ p. i- s* p' S* q0 O8 @inverse]
    ' m7 x3 q5 n* {+ I- k) g( w/ Y1+ L# @8 c: ^# Z  i' k" s/ P
    Abelian Group of order 1
      y3 ^# x7 ]% uMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant* ~# B5 b+ {/ e
    -3 given by a rule [no inverse]+ n8 I" x4 T5 G, F. c
    Abelian Group of order 19 K/ j+ L  v! {7 \5 p6 e3 z
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    1 @; q+ \2 [# W1 H/ B% Q9 P1 H3 a5 h. ~-3 given by a rule [no inverse]
    1 V! _9 p( E2 L) s' Gfalse; z0 C% r5 ~/ \0 }7 h$ e* `
    false
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑 4 ]) \- w, F' r' G( o4 U' I

      P. B; Y3 ^5 _Dirichlet character
    ! T. i' t5 n. ]; PDirichlet class number formula
    & r* R. X. E" r3 |3 ~, l& Y  ?3 R, ^2 K3 y% Q2 `, z% `7 P
    虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
    % A: J! T) ]+ d7 Q: r, u  T7 f; p5 @
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1, I* u9 }9 s6 t! G! q

    , n/ u0 _3 [( t; W" O-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,+ O7 ^% Q1 k& {( {4 F- N; g% H
    h=-6/(2*3)*Σ[1*1+(2*(-1)]=12 A4 O) f* T5 w9 x$ f$ r
    6 r, h& C. Y- Y/ t& @) w) [6 E/ [
    -5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    0 [1 A' c2 K4 |* {3 E. J
    ( D' B/ d; w4 J8 Y. R  }3 @, c
    ' \# O6 j7 u# U4 n9 A: u- W$ Q( l5 g
    3 v5 t& N" M6 {6 ih=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2& Y& F6 v! [$ U' h& g

    5 R- Q; \+ R3 ]- x7 i
    # k6 v: Z7 W3 Q. a; k9 y4 n9 R/ B4 T, U7 A+ F/ J( U
    -50时  个单位根                          N=2002 C8 c% K7 F: [+ ^% [2 J$ _. Z
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 180)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 178)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 ; R4 A( O8 ~7 J

    ) y+ x0 i8 r' {( X0 @F := QuadraticField(NextPrime(5));; J( a6 T+ |' p% }9 z& N8 g# `
    . S9 }) N3 q' I
    KK := QuadraticField(7);KK;
    ' k  P% D; [7 S% A# }7 h/ bK:=MaximalOrder(KK);
    ( w4 E( S8 F7 vConductor(KK);
    . n' l: V- R" Z" D' N2 \% _6 zClassGroup(KK) ;
    - E  F$ g$ L5 a$ h  Y! _& O% CQuadraticClassGroupTwoPart(KK) ;
    4 j' d# N/ ]1 C7 T, L% i; fNormEquation(F, 7);
    5 K5 b0 R" q7 e" y0 o2 N6 p$ RA:=K!7;A;& s7 j7 x6 u+ W$ L7 [
    B:=K!14;B;3 g8 Q( L+ a" f
    Discriminant(KK)& F# A4 c- Y9 O# ~4 x& J. j

    2 }2 R# M) ?& BQuadratic Field with defining polynomial $.1^2 - 7 over the Rational Field0 F  A  b% I  I$ Z
    28
    * a  m' n* q/ a" V! i( @6 E5 DAbelian Group of order 1
      Q& p3 x& b. {Mapping from: Abelian Group of order 1 to Set of ideals of K( z+ ~, Q' R- j9 R) U
    Abelian Group isomorphic to Z/2
    $ W2 j1 R" M$ I9 z$ a/ n/ iDefined on 1 generator! p  @/ s2 t; ]% ^# J8 t: [+ h
    Relations:
      t+ U: ~2 V9 f    2*$.1 = 0
    " [+ S) X) d8 i1 wMapping from: Abelian Group isomorphic to Z/2
    ' [+ d9 m% v2 z  s6 Q' G2 I' s6 C) gDefined on 1 generator
    ' y" {+ Z/ o7 X& o4 \4 J- v; xRelations:) E3 G( D* O) M# x- G, k
        2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no - f& ]; T5 L$ A- ]' |8 r- }) h! T
    inverse]. _4 Q& l  {, D$ h
    false  I1 }* }6 F- p# ?1 C4 V7 g0 ~
    7
    * N. _# u# `3 b14  ^) h$ Q* k- y
    28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    0 {0 r  H, P: n5 T3 F" ^  c& w8 S4 [: G$ _( k
    11.JPG
    % T# g! B2 o; U* Y9 f* g- }8 a6 G9 D7 Y
    & o1 \6 z: u% Q2 x7 L/ P$ Z* u  y 3212.JPG
    ! M( z3 Z0 f  y- N# I& t. i. w% |% o. t1 F: h7 ~
    123.JPG
    $ l& \$ C8 x+ }- a# A# j1 Y
    + Q; c3 }. m  b% B分圆域:" s0 ]# U( E* H: N( p6 {; h
    C:=CyclotomicField(5);C;% h, B" t8 w1 v8 O- `
    CyclotomicPolynomial(5);
    2 M$ W% F2 W% l. KC:=CyclotomicField(6);C;7 t9 Z# f7 h, m- v9 R: r
    CyclotomicPolynomial(6);
    $ A1 S6 y+ H: a# m$ b0 x. BCC:=CyclotomicField(7);CC;& {$ R  S& \/ }- L
    CyclotomicPolynomial(7);. y9 W# o0 t1 Y, d) f
    MinimalField(CC!7) ;
    ; L& j4 m! D( P$ x5 oMinimalField(CC!8) ;
    ! r7 d  d8 ~  ^MinimalField(CC!9) ;/ u+ ^& l( }: K: c4 J( v' ^  c
    MinimalCyclotomicField(CC!7) ;
    : _9 _) V6 I% [RootOfUnity(11);RootOfUnity(111);
    4 ?2 t, O; A& c, [Minimise(CC!123);1 ^6 U. T3 t- K- L" x+ Y( d9 b
    Conductor(CC) ;! F, {) |+ s% P5 D% `% m  L1 V
    CyclotomicOrder(CC) ;, t9 J; m9 ?% D5 n

    : s+ u+ p0 r$ c/ G# cCyclotomicAutomorphismGroup(CC) ;9 L9 k1 w/ F* N4 B8 V/ s5 i/ n
    : F- n+ b/ t1 F$ X( _, K8 l
    Cyclotomic Field of order 5 and degree 4
    % q3 s, v9 v8 K; a: y$.1^4 + $.1^3 + $.1^2 + $.1 + 1
    / X# D  t/ J# r# @" f) `& j9 [6 ECyclotomic Field of order 6 and degree 2
    3 }1 ?$ f8 M, a$.1^2 - $.1 + 1
    6 N7 m4 t: H$ @  D5 X0 FCyclotomic Field of order 7 and degree 6; [- Z4 \8 _/ \  |, `+ }
    $.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    . f: E. b6 B+ H! gRational Field! `$ u; T& B' ~: m
    Rational Field# R3 ~3 Z6 U4 {- U4 u  E. c
    Rational Field
    7 k7 {& X% A' C1 }+ nRational Field( W+ {$ U  A+ [+ k, N6 D
    zeta_11
    : m& T' M: k! D7 V7 L0 H2 mzeta_111
    3 q- i) p* S6 S6 c, q" M123
    - L, D5 a, y' F1 K) C7( ^* K% k9 f# z2 g; k1 t1 D
    7# Z! Y3 Q; f- l8 y$ s: Z
    Permutation group acting on a set of cardinality 6" i  h: i( G) F9 Z1 U. [6 S/ K  B
    Order = 6 = 2 * 38 Y2 ]8 G8 D; L
        (1, 2)(3, 5)(4, 6)5 X3 b8 s2 X3 V) A1 z
        (1, 3, 6, 2, 5, 4)
    . p# N4 ]/ _: f" ]7 K9 D2 DMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 4 p) r; u( q- _% P
    CC
    8 [/ e0 q2 ?: v) H6 b6 h  Y0 fComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 2 r$ S2 P' X: t9 L! W
    Degree 6, Order 2 * 3 and
    ( |' k5 i$ O9 F9 {" R9 jMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    5 g6 w4 a9 H- m) I7 i* ECC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑
    " g8 f7 k+ q5 q
    lilianjie 发表于 2012-1-9 20:44 & l2 ^) `% Y. F! z# t" K* X) P
    分圆域:
    / v8 R4 A& D4 r0 h4 FC:=CyclotomicField(5);C;
    9 `" U. `  n* V+ ?! ?# p- _CyclotomicPolynomial(5);
    ) |* g" O2 T4 {# U

    # m8 Z  |6 d5 W& F  q  e% R分圆域:
    / g  g5 U9 }6 w- ^分圆域:123+ B4 R" `1 f- k2 Q
      C7 F+ S2 w( T, y/ N
    R.<x> = Q[]
    & g( O' c' G- \F8 = factor(x^8 - 1)
    1 l# H, \+ l% ?" vF80 {8 g/ d) u/ t& T1 n1 u+ C6 R6 x* p$ Z

      V- G- v: e1 f2 ]8 T! h! F' W(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    , e6 P- M! r! f. D; x  D' G! o+ u* J( j
    Q<x> := QuadraticField(8);Q;
    2 s  z1 M. {2 Q/ q/ g5 S9 pC:=CyclotomicField(8);C;/ A( @- `4 k$ o3 y& _: m0 U5 i3 K$ ?
    FF:=CyclotomicPolynomial(8);FF;; @9 ]7 Z" p4 v; ?% Y8 [2 w

    & m/ x1 c4 f# v! v8 j# O4 ?! MF := QuadraticField(8);+ d! y. k5 m/ E% G" r4 ~# s
    F;
    / D# R1 \! w6 j# h0 e/ k. TD:=Factorization(FF) ;D;& Y, I5 j/ ]+ Y6 |5 Z2 B  _
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field, i* H/ A4 O8 R2 V
    Cyclotomic Field of order 8 and degree 4; A2 L+ t7 J' F2 }7 `
    $.1^4 + 1$ Q5 r, o$ ^' L
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field  i( R0 w8 e8 x- Z* P$ {  J8 b5 T( p
    [
    4 r5 b" \4 ?- |+ H: \2 y    <$.1^4 + 1, 1>1 w& X* P. w6 N. M( V, a- w
    ]
    ; _, N$ R  k  T! W! t; S6 A/ h5 A5 M1 E: `, Y2 k
    R.<x> = QQ[]
    ) T' }8 ~+ G) I+ W0 hF6 = factor(x^6 - 1)$ |) j6 X& k# ]1 M2 W( w# @
    F6
    - ?7 n& _  W# U5 W
    4 D& Q. j8 w' ]" Z1 e4 R(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    % Y6 t6 O, @. `, _- }% R4 X3 I# x; {% O
    Q<x> := QuadraticField(6);Q;+ Q5 J. I0 x# I" F# W
    C:=CyclotomicField(6);C;
    2 |  O* E9 N- d  UFF:=CyclotomicPolynomial(6);FF;
    ! T( k- l' M( d% v% H  z$ L% {1 ^5 |; a
    F := QuadraticField(6);
    # A. |; S( S& X* V% UF;
    % K; }2 r( P* K1 p8 O$ E+ TD:=Factorization(FF) ;D;. A) }0 u% y/ l3 }& `' G1 F
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    ' \" U, ?- g5 ~Cyclotomic Field of order 6 and degree 2- D9 [& o' U) i
    $.1^2 - $.1 + 1
    * x1 q+ f6 K5 c9 Y! i+ kQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    " D& u8 M" ~- a: N9 w* Z- G[" j- l0 h& D0 g$ A
        <$.1^2 - $.1 + 1, 1>
    ) U4 t" c! c( w( `5 s% M]+ u3 @" E% Z7 u2 J# X) C
    $ E$ @* \3 k, z/ H
    R.<x> = QQ[]4 C/ ]5 O; d. m) O4 D
    F5 = factor(x^10 - 1), P0 M/ g2 ~4 J6 ~+ u
    F58 ]/ w) T) T6 v  }5 v
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    4 Z. p$ S0 p- ^" h1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)- U" M& h( d. T) ?$ P  ]

      d0 _+ U. o6 j+ o, fQ<x> := QuadraticField(10);Q;5 ~$ f* m2 K1 G  @. f- v% r
    C:=CyclotomicField(10);C;3 |  u8 ^0 c1 C4 J
    FF:=CyclotomicPolynomial(10);FF;/ H- g' g+ }" ^4 \* }, A# V
    5 ~. U/ c7 E; p
    F := QuadraticField(10);
    ; a. ~" W5 U: z! g$ B4 DF;
    0 Y- @* G& K/ U( h- ED:=Factorization(FF) ;D;
    1 i1 y, I) L( @3 D# g7 IQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field: P3 m7 p- P5 ]+ C3 f. M8 S
    Cyclotomic Field of order 10 and degree 4
    5 L( C: I, Q7 k% }) c/ S$.1^4 - $.1^3 + $.1^2 - $.1 + 1- Z8 O* i# ?! c$ s, ^# O- a  W
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    ' q- I. }0 r2 }) G[
    . [8 k' O' l* C1 g: h    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>/ K# L5 k3 t. _5 l/ G2 _
    ]

    c.JPG (217.37 KB, 下载次数: 184)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 174)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 13:39 , Processed in 1.036977 second(s), 102 queries .

    回顶部