QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2217|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    + h$ v$ M, z/ o+ E3 Z" ~
    ' `7 ]7 N" `/ p+ G9 m% r) q* iQ5:=QuadraticField(-5) ;
    4 Q, ?, e2 _0 F& |; [; T; dQ5;
    7 a6 h  z% |9 Q2 r9 Z6 U: a% O
    - K3 |, `+ E& @7 V# N9 f3 k( F% qQ<w> :=PolynomialRing(Q5);Q;
    ' K. j! z4 [7 {  i7 _7 E0 A7 FEquationOrder(Q5);
    * k. V4 ~$ \% y; E2 EM:=MaximalOrder(Q5) ;% }, `+ [/ o. y' W1 }* X
    M;
    & Y" o7 L5 K$ y: H/ C" T" PNumberField(M);
    , B2 L! Q; v6 G8 U" o1 R& L* P! hS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;0 T& h/ L( N& Q! ?9 d
    IsQuadratic(Q5);, z+ K( v9 g! v
    IsQuadratic(S1);
    " m+ a" D( u) Z3 t3 p5 v8 T+ G2 FIsQuadratic(S4);' y0 y! [% J  F, u4 L1 ]' Q% Y' Z
    IsQuadratic(S25);
    ' k+ C% \- ~4 AIsQuadratic(S625888888);4 T& a  K! q( ^2 ~# _; D
    Factorization(w^2+5);  
    - C+ i6 j4 M( T5 d3 X7 l( u2 qDiscriminant(Q5) ;: k8 p' w1 ]4 q4 @9 h
    FundamentalUnit(Q5) ;' O" [% `5 g6 \- v( `2 j& B/ E
    FundamentalUnit(M);
    , v  c7 k( z$ {) i& Q/ U% A* GConductor(Q5) ;4 N$ L  u# Y: V4 R* k, {3 j& ~

    " m9 A" Q: K( s# ]! r* pName(M, -5);; z! V% x* L9 v; S" o( C9 g
    Conductor(M);
    # [* A, T, r8 l$ R* i! NClassGroup(Q5) ;
    ) ^9 Z$ q& X! z0 M: I" qClassGroup(M);
    9 d6 d- C) `3 W6 VClassNumber(Q5) ;$ K7 y& y* s2 e1 ^
    ClassNumber(M) ;; U* D5 |7 K1 t0 H0 S8 C4 x+ ?. J
    PicardGroup(M) ;: b4 R/ Q" o4 a
    PicardNumber(M) ;) E5 }) G; F# ?6 `/ @

    / X" U* K+ U4 h; CQuadraticClassGroupTwoPart(Q5);
    + n& q( d$ v& p6 L- k6 }: yQuadraticClassGroupTwoPart(M);
    ( a2 f- F! j* K* VNormEquation(Q5, -5) ;7 B3 Y, r4 v% L6 s8 [, \
    NormEquation(M, -5) ;% O& e" @, t1 \1 l0 F
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    ; |& G3 n+ t$ R6 s. hUnivariate Polynomial Ring in w over Q5- Z. Z) X1 p' d: e
    Equation Order of conductor 1 in Q5- t( j; I% v# l' p0 N. l1 c* p
    Maximal Equation Order of Q5
    & m4 R- b5 ^% U' cQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    ) x5 p' r0 ]% U" qOrder of conductor 625888888 in Q56 C" @0 Z3 ?7 f$ r
    true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    9 k7 v" t9 J7 [' [- H9 d; }true Maximal Equation Order of Q5
    " |: Z" o$ _4 @0 t: xtrue Order of conductor 1 in Q5* ^8 u1 n" M1 u; C9 T# k: `
    true Order of conductor 1 in Q5
    5 {( E( \* a  O9 V% B- ^4 p5 btrue Order of conductor 1 in Q5
    ( ]+ n- {- j( M% f$ x; `' @[8 w& t7 j! J4 y) K; E8 i3 S
        <w - Q5.1, 1>,8 @( i1 @& V, K6 {4 `9 Z1 v
        <w + Q5.1, 1>
    / u- A$ {- P  u' s! m4 |1 f]/ J" U' {" ?# \% T. {) |
    -20
    : [( B1 c+ ?; j+ s2 q9 _3 o5 a5 \) `
    >> FundamentalUnit(Q5) ;
    ; N! r2 F' d) u: f                  ^
    - d9 F; W0 `6 KRuntime error in 'FundamentalUnit': Field must have positive discriminant2 q( G" j  R3 ]: _

    6 D; e$ x  m, L# U" @
    * ^; O1 y" Z$ \- M9 p( p>> FundamentalUnit(M);- F! H$ M5 E; p4 C" M: i
                      ^
    5 y2 @' E! [6 H7 y& S9 G" iRuntime error in 'FundamentalUnit': Field must have positive discriminant
    1 U+ G( M$ q; J8 u* A9 o& f4 E1 u( A. N7 W7 K
    20* |% Q, W& n( O% P8 R# x6 @) x

    ' i1 n. b% ^5 I! T>> Name(M, -5);+ x. u' G' m+ }' B
           ^
    ) F. f  e/ u/ eRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]6 o& J# m  F2 n

    6 }6 X$ K! ^4 K8 ]+ F- T1% k, F' |+ [( _  u" u# @
    Abelian Group isomorphic to Z/2
    & G; o1 A/ ]1 V8 d9 ^5 kDefined on 1 generator% j3 U$ ^& A7 o8 S; b8 [' U2 z
    Relations:
    , a3 ~6 q* v& ?. T! V2 u    2*$.1 = 06 ]3 {$ p8 J+ @" `! n
    Mapping from: Abelian Group isomorphic to Z/2
    ! f6 A/ [2 C# y; b6 }) U1 y. S6 _Defined on 1 generator; i, n) W1 z* ?. B4 {1 j9 I3 u( K
    Relations:
    : t6 q" Z) f  u+ r& i+ Q    2*$.1 = 0 to Set of ideals of M
    + F. W# \! R1 ~0 @& yAbelian Group isomorphic to Z/2
    % U1 B! T% b' A5 k: sDefined on 1 generator) l: {1 o  h4 D; |) ?+ O
    Relations:
    1 a* ]" V3 ~- O1 H    2*$.1 = 04 k- y" e4 V2 z  o5 Y
    Mapping from: Abelian Group isomorphic to Z/2
    3 Z- }& J) m: x9 t- c# G; ?Defined on 1 generator
    * Y  ^. `! [+ t# a3 tRelations:
    6 x: m7 W1 G5 g+ e    2*$.1 = 0 to Set of ideals of M( s* Q. B. Y4 p
    2
    4 a/ L7 g! s3 w! _2
    % K6 h& o' S$ r3 \# K  o4 Z. I; `Abelian Group isomorphic to Z/2/ W/ L& c* Q% Y% M$ i
    Defined on 1 generator
    8 d4 a; E0 ], E! N4 gRelations:
    $ u$ {0 t3 P6 R8 A5 s5 J2 {    2*$.1 = 0
    2 ^7 @( \, ~6 X, t" AMapping from: Abelian Group isomorphic to Z/2
    4 K' V" @' J: PDefined on 1 generator! l' P% ?6 L+ G) O9 W& I* f
    Relations:8 r9 t9 o* q0 B2 x9 V- N6 L2 g
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]' n. n3 _4 l* ]$ ~( X; u
    2, ~& k# y; c+ F  Y% c8 @& _
    Abelian Group isomorphic to Z/2
    & @7 ^3 D1 N1 LDefined on 1 generator
    # @, w0 [8 N9 f5 a8 {4 j% ~Relations:
    - e& g- j! x* I3 X# c: n    2*$.1 = 0
    4 a$ K& T0 I3 M, u; O% ~Mapping from: Abelian Group isomorphic to Z/2
    # F6 z( n* W3 w7 ^7 M! BDefined on 1 generator
    ) @3 x) }" C; G- cRelations:
    . K2 j* I; ?9 f) {* K* m7 ^5 J    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 2 D! @  R/ w* O
    inverse]
    " \# D/ w( L" t- ~Abelian Group isomorphic to Z/2
    " G& P( I1 O* a% ^4 jDefined on 1 generator
    5 Z; |9 C1 Z3 R2 H( w: }3 `. f) FRelations:
    % O5 q; L& p- ?6 J- \    2*$.1 = 0
    # @+ P; {' c; _; U' \2 S6 lMapping from: Abelian Group isomorphic to Z/24 R4 B' y! H* w: ~( p& c2 ]. X
    Defined on 1 generator
    + h6 i7 K' s4 v: o6 `' XRelations:: ^! s' y1 q( x1 ]& F1 c  H* J. u6 W
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no ) `; K$ _8 K* F5 u9 C# p$ x( b
    inverse]
    ) c3 c+ R: Z" N. I: \2 f* r3 `false
    4 j; i6 L! N) [' r) {1 Ofalse
    , S1 d1 y+ j! {; R) V( `0 Q) e==============
    $ F" C" R% C/ x2 E, G* c
    ) \9 W, [' l6 i; w& ?
    7 G. f  p; U4 r- E% [Q5:=QuadraticField(-50) ;& z- B- O6 L- ?
    Q5;
    * W2 U3 ~+ V8 x: L5 m
    : R4 L: N) l: c3 \. }% J8 \! PQ<w> :=PolynomialRing(Q5);Q;. {% F! I8 H# o$ \
    EquationOrder(Q5);
    9 J  ?/ H; O2 d: y# O; r9 ]M:=MaximalOrder(Q5) ;& V+ z, L6 v* g& x1 F: A
    M;
    * q, r, G9 E. t- n, tNumberField(M);
    . i: F" K2 G5 d" gS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    0 c, N2 R9 k( J2 t' H+ a& ]IsQuadratic(Q5);
    + c( y2 Y* m4 Z* PIsQuadratic(S1);
    $ c9 L. ^* p3 R8 W  }- TIsQuadratic(S4);- ]) f+ O+ E" C: L9 o5 `
    IsQuadratic(S25);
    6 r! ^+ p* C2 T; U- uIsQuadratic(S625888888);" @% F# G* {3 R- r6 A- D
    Factorization(w^2+50);  # u2 P' ]* k; w) L! x9 W& D1 f
    Discriminant(Q5) ;; ^9 N3 ~4 a" ?5 A; L* u
    FundamentalUnit(Q5) ;
    + J0 ~2 g9 M( |% s" l: bFundamentalUnit(M);
    1 {+ N3 J: J! Z9 L1 JConductor(Q5) ;) w1 a8 z' G9 X
    : h) a# c) Z4 r7 l- m4 h8 T4 y
    Name(M, -50);" \6 V4 c  S) @! H
    Conductor(M);
    . C1 e! v2 ]; u5 u7 DClassGroup(Q5) ; # N- n' I+ B: T: u0 F6 U
    ClassGroup(M);+ a0 Z% i8 R2 z# p) t9 k
    ClassNumber(Q5) ;
    $ K, I6 @1 l+ p+ A0 c* qClassNumber(M) ;/ u# x- X+ a) \  o' S
    PicardGroup(M) ;
    / K' t/ A; S( J6 ZPicardNumber(M) ;: |- M( E# t' B3 M

    - D( ]% [9 ^% ?4 O  UQuadraticClassGroupTwoPart(Q5);
    1 v3 W' {3 _$ E* yQuadraticClassGroupTwoPart(M);- H) V4 h1 l5 a- s# m
    NormEquation(Q5, -50) ;' h9 S' c+ {# r# {# A' D
    NormEquation(M, -50) ;
    - {# e" q# V( \9 I# {! A9 Q5 P( X: `. `1 i/ p8 k2 ]' s/ I
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    ' i" c5 S8 y" {% O& pUnivariate Polynomial Ring in w over Q54 v& I) _$ H( P( K4 w: x+ Q" M; X
    Equation Order of conductor 1 in Q5
    , K' J- `8 w/ `/ y( m  QMaximal Equation Order of Q5
    & C) ]8 \; O. J% m) R' HQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    . p3 \; c9 B# z, ~Order of conductor 625888888 in Q54 h0 C6 i* V" Q
    true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field+ I( _, g1 d, G% D7 p7 a
    true Maximal Equation Order of Q5
    , w3 j$ J; O' R% l5 ]7 m0 s6 |true Order of conductor 1 in Q56 I/ F) w6 ~8 l! s  P
    true Order of conductor 1 in Q50 i* I' M! y7 p1 K& s' ]) W
    true Order of conductor 1 in Q53 b4 F8 A; H) D( K" @2 J" Q4 k
    [. A3 b& S# ?7 R- v9 d. Y4 [
        <w - 5*Q5.1, 1>,# q* m9 W* C, S5 U7 B# v
        <w + 5*Q5.1, 1>
    : c: \- X4 G; Y3 u% Z]$ {3 M4 ]+ a! P0 y
    -8, t* d! n  a$ E

    ! O6 j  ?9 `  ]4 B! B>> FundamentalUnit(Q5) ;7 P7 F- p+ {" D* S: g; G% ~
                      ^$ Q' k) Q0 y/ u' B
    Runtime error in 'FundamentalUnit': Field must have positive discriminant4 M  q5 X& [9 |" A; Q1 J

    3 r8 q; D4 W" H  |  u+ E6 K! u& b, Z, |4 M/ B& U
    >> FundamentalUnit(M);. w0 w0 |  g+ W& b7 u/ E0 A' l
                      ^, q- [' M6 i( f3 ]+ v) t6 E
    Runtime error in 'FundamentalUnit': Field must have positive discriminant( y& d/ Z, _* [& j

    $ i- j& _: K$ V0 x" ^/ Y) V$ P  y85 @% i' n; Z6 I: |. C/ F5 {& j

    0 Q0 s- |" @2 U% v7 z>> Name(M, -50);
    4 j" y% q% i0 C4 z$ y       ^
    " q; a& c1 ?0 x; u) FRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]
    9 x# w% ?' |" z, I6 N$ R
    6 }& Z" ^0 j2 V1
    * a8 n, q2 K3 r" GAbelian Group of order 1& P! \0 E0 Q, G5 @: U' t* ~# K7 U
    Mapping from: Abelian Group of order 1 to Set of ideals of M" D& w) K4 M! d: G" i) r( ?1 c
    Abelian Group of order 1
    " N. |% H# r6 p% mMapping from: Abelian Group of order 1 to Set of ideals of M
    1 c$ V. q2 R% r+ C  P/ g6 k) o1
    # G4 X4 c% S( K' S7 l12 @( n1 s, I& e: u
    Abelian Group of order 1
    ) N/ y& j" T/ L/ b( v; dMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    , w: x& p! i, z2 |6 oinverse]( I. M/ f  g3 [0 Y& D
    1
    ( p# A6 x4 P0 }( l/ DAbelian Group of order 12 w! N8 x( A" C9 w4 |8 b- A2 h
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant3 ^, e' K: [8 F# g
    -8 given by a rule [no inverse]
    ! }# h* Q0 O3 T5 m- L9 _Abelian Group of order 1
    ) L$ s& F1 Q. |Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    7 t8 `: I/ F- z+ I7 z) |-8 given by a rule [no inverse]
    % j0 a, [7 u/ M; l2 E) afalse2 m1 I0 i" o* L8 i( z8 j
    false( d! ?3 Q; t3 E. k* z
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
      }: T& E, c' s( l5 ]9 T
    5 {& ]# z2 y/ w! e) m. [/ ~5 ?4 J. ?Q5:=QuadraticField(-1) ;
    ; V3 B! n9 C0 a/ j' h- IQ5;' D5 H. f9 ]0 D2 e7 H3 K
    / \5 n0 ^5 H8 X7 @' R5 Y& p+ Q
    Q<w> :=PolynomialRing(Q5);Q;
    + f9 O5 l& T( l# i7 Q4 p/ b0 J0 \EquationOrder(Q5);  A# N6 S6 ?6 D0 F" [9 A9 q/ j
    M:=MaximalOrder(Q5) ;
    # I3 P% `1 r0 r& w9 i) rM;; ?0 P% |0 k0 L- I
    NumberField(M);
    1 A& c3 Y. q* U) n/ uS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! q9 L+ y0 t& B3 I( W8 ~- w
    IsQuadratic(Q5);% D5 @% _8 }: e
    IsQuadratic(S1);
    ; j# N4 H% ~" J3 G' F( HIsQuadratic(S4);/ T* s& Y! t( y9 ]1 g2 R
    IsQuadratic(S25);$ x' c+ z2 y. @! |
    IsQuadratic(S625888888);
    * P$ B8 M& R5 }( Y2 d+ xFactorization(w^2+1);  , y) L2 I- _1 ^7 t5 H
    Discriminant(Q5) ;3 f+ \& }2 ~. Y4 |
    FundamentalUnit(Q5) ;
    7 _9 b0 S1 n( _9 tFundamentalUnit(M);
    / }5 t. F% k5 S5 ^( h+ {& EConductor(Q5) ;
    7 X+ T9 m! h% p7 K. P7 }
    / J( c+ \8 f  Y8 ^6 h: |5 `5 hName(M, -1);
    4 A  C# ]" T6 w0 G, m9 VConductor(M);
    , q, t) E# h1 S  NClassGroup(Q5) ; 3 Y3 V6 }& J3 O& q/ y6 w8 L  ?
    ClassGroup(M);0 v. z, E- B* O
    ClassNumber(Q5) ;
    8 v! i4 H/ G5 r# e3 K5 KClassNumber(M) ;
    ! {& y; x$ h  [  VPicardGroup(M) ;" f9 ], F+ t' p# `+ U* t% w
    PicardNumber(M) ;
      {! w) I& y3 X& [
    * D4 D: ?* |$ G5 x+ oQuadraticClassGroupTwoPart(Q5);
    7 L' X8 A$ u# ]- q( _$ @QuadraticClassGroupTwoPart(M);) L& Q5 |0 Y- k* ]- [$ j& V$ C" i
    NormEquation(Q5, -1) ;
    / Z) i" E. W* ~3 q  S  B& ~NormEquation(M, -1) ;
    6 E' ?: S$ r' q  z1 H+ l
    ; `; m1 f2 l4 z9 V! JQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    1 I9 f! T% }: YUnivariate Polynomial Ring in w over Q5
    + _5 ?& F  {6 A) sEquation Order of conductor 1 in Q5
    ) o1 z, g3 a5 Z0 QMaximal Equation Order of Q5
    $ l5 g$ L; m& W  o4 y, ~Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field$ j: T! @/ Z+ R& [
    Order of conductor 625888888 in Q5
    ' g7 p& F2 i# U3 N1 }# Y2 Ttrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field; U7 z4 L- v! ?% _8 g
    true Maximal Equation Order of Q5! Y$ c; f* P. G8 _4 z
    true Order of conductor 1 in Q5& ]& c/ b% A* |5 O4 U* ~+ |
    true Order of conductor 1 in Q50 ]- y/ u. _' p8 p' j) T
    true Order of conductor 1 in Q5
    . `4 N! g0 g6 a. m! u[
    : w0 k& `5 {3 N/ Q8 t4 h    <w - Q5.1, 1>,8 Y: x$ `6 B+ s# V0 W" m1 s: T& H
        <w + Q5.1, 1>+ |9 g1 A2 l/ W" o; M5 w2 |
    ]
    , U1 L: \% ]9 c4 o" m: d0 L-4* ~: }( f' E7 {* U/ h( H/ N" a" B

    " }" n* V0 Q) l. B  F2 J; X% V4 `>> FundamentalUnit(Q5) ;" G+ [" `; H* i- X: w
                      ^" P% h0 z: w5 G
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" j" x) z; @* E9 m
      [3 a& \" R0 W# k* G

    & W# [' X3 Y3 x" `, @: `  K% o2 I>> FundamentalUnit(M);2 P4 t$ v) L: A/ [; L- P2 z
                      ^$ O4 w$ B' A1 G
    Runtime error in 'FundamentalUnit': Field must have positive discriminant( f  ]! B# b% A
    4 z# R% X5 n* O; g
    4( [+ e: ?" P4 \# o9 G9 X
    5 t9 @, ~( l) V+ Z3 F; T& H, W
    >> Name(M, -1);* ?3 I: \3 p3 r3 P- E' `
           ^) g) ~3 f  E2 d$ }. b4 k' c# |
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]+ H) r2 F1 u% k; r: ?8 o1 g/ s

    / D/ X- r& |/ G% P3 i+ b5 @+ Y19 s. _4 O$ ~5 \
    Abelian Group of order 1# G8 C1 C& V8 h
    Mapping from: Abelian Group of order 1 to Set of ideals of M3 l# Y+ j' ?# a1 M
    Abelian Group of order 1
    4 @4 E0 c% k* B2 M1 W3 DMapping from: Abelian Group of order 1 to Set of ideals of M: k8 s, W% E6 c- e
    1; j3 }6 M. z9 U+ E$ {
    1# ?- K- V. t* b+ S' n- i0 F! U
    Abelian Group of order 1
    : J0 q) R+ g8 j: A4 {- f6 gMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no$ Z- N3 p* Y# f. Q1 Z5 w9 ^0 y: {
    inverse]) m: s( I. L# \" b& v
    1$ O3 r7 D+ W7 O7 n
    Abelian Group of order 1" R# n# C  g/ g+ T4 W8 Z! a
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant5 T* Q; G% s% _- t$ t! ^
    -4 given by a rule [no inverse]
    5 k: M+ ]7 j! E2 r4 j4 TAbelian Group of order 1+ V9 P$ N, x% d5 D4 z
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    * I% U3 Q5 n8 z9 e# v$ p8 S+ B-4 given by a rule [no inverse]
    & \1 x! ~. \$ f* G0 t; pfalse" z" w% o" {1 [8 V
    false
    : {( b7 W9 V3 B& h7 V: L3 e===============3 s2 g7 t% v7 U! v+ d( Y2 K
    2 J. K' h  L, o8 t* f7 d0 `7 J
    Q5:=QuadraticField(-3) ;$ N; m  x0 k3 ?# t
    Q5;& S. V, z) ]  h  Y4 z$ H

    3 o, L3 M; C0 Q6 E# f# a. a. QQ<w> :=PolynomialRing(Q5);Q;
    + @3 x% |( L. q; j0 Y; f! ]EquationOrder(Q5);0 I# U4 X; N0 n& u, O2 g4 l% z1 ^
    M:=MaximalOrder(Q5) ;
    - N6 |1 y& @, P8 vM;
    * R* m5 e( L; }3 l* Z# qNumberField(M);
    8 s: \5 z/ y3 l3 W6 [S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! ^0 E5 d/ T6 M$ u  f
    IsQuadratic(Q5);
    " Y* l" E8 z- }0 }7 o. yIsQuadratic(S1);+ }* `& C7 p6 v1 {/ N  ]; M
    IsQuadratic(S4);# @, l3 h. {  r4 V" k$ o6 V
    IsQuadratic(S25);+ {: `( {. u4 Q& }& s2 A% g
    IsQuadratic(S625888888);9 ^; d5 R! n8 J" f( P& u
    Factorization(w^2+3);  ( s' W' ]$ W/ a5 g, C7 r5 {( G
    Discriminant(Q5) ;8 Y# d$ a1 f+ L, Y! b7 W/ d  s
    FundamentalUnit(Q5) ;9 W& D; [4 j  R- o
    FundamentalUnit(M);2 R: e- I/ M2 t6 q! _# W
    Conductor(Q5) ;5 |4 S1 A- \2 @9 |4 v

    9 {; m+ c5 q8 X* t4 t! |7 m+ G( @Name(M, -3);8 `4 N+ e: X9 r; B" h. u
    Conductor(M);
    ) a# `4 P8 W2 I- R' DClassGroup(Q5) ; 1 L. j) i6 @" |
    ClassGroup(M);* H4 P  \6 T; A2 G- ?7 i6 ^. @
    ClassNumber(Q5) ;* K0 a4 k& f0 y& c' Y6 v
    ClassNumber(M) ;2 N1 W; n6 `6 `& g% F5 x
    PicardGroup(M) ;
    4 r- x7 ^3 _3 S! n& \PicardNumber(M) ;
      \% [* }6 i; g6 u
    - n- d) @. U8 m* Q5 `7 sQuadraticClassGroupTwoPart(Q5);
    , z& R& S. |+ r: pQuadraticClassGroupTwoPart(M);# N7 C) _7 `! ?, F
    NormEquation(Q5, -3) ;. C* [* p; P" K
    NormEquation(M, -3) ;
    : |+ P* M6 ]! N( O8 }7 S& l' L4 a) b  f, B
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    : H7 V4 j+ G9 H" r/ l4 GUnivariate Polynomial Ring in w over Q5
    2 _5 n- N" ^6 xEquation Order of conductor 2 in Q5
    9 I: k' B5 F; K0 {, w! U1 sMaximal Order of Q5
    1 j4 H3 N& v9 i4 m- nQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field2 J! v4 P  H( z5 o6 `* r9 Y7 m
    Order of conductor 625888888 in Q5" v+ G& a# _' ~/ M4 ~3 ^( u, P
    true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field! r" h" P- J1 x) Y; \5 j
    true Maximal Order of Q5  E9 S+ a' S- O8 q1 J6 @3 x
    true Order of conductor 16 in Q5
    0 n! L6 v& V" Q/ w& e4 L) H, J6 Vtrue Order of conductor 625 in Q5
    & U5 z4 H0 j% o  Atrue Order of conductor 391736900121876544 in Q56 S# |: d; h0 m1 X
    [
    , J0 e( \# v. \    <w - Q5.1, 1>,
    . ~' O6 j8 L# N4 a, v; Q% A; {& f    <w + Q5.1, 1>5 R  N2 D2 L% N# B" O/ g1 A$ P" b" R
    ]' R1 w  J/ |# U& ?! {6 T
    -3) g1 o* o! g8 h6 |. v' C

    / b% v( H! d+ m  E( x. v9 m>> FundamentalUnit(Q5) ;
    0 A7 J; Z- S- G                  ^
    . d* I, |: ?+ ^. \, LRuntime error in 'FundamentalUnit': Field must have positive discriminant
    2 R9 b, Q) ]' F( ^" R2 U/ Z" e# U
    ; o4 t  |& B2 y7 \9 n) s# `
    ; h' _1 A, c! L6 Z; \8 U  {& k3 X: ?>> FundamentalUnit(M);/ ?  r" f! M) E- o0 e  J
                      ^, j' X+ d! B* h) R7 z
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    % T$ n+ b/ k; M/ K
    " I" I1 v+ f* u. H3 E( _3
      R0 }* _- ^+ h* h% X1 T
    6 T7 d0 {5 V, R6 V>> Name(M, -3);
    , D7 ^$ e1 W+ c  N' s1 t       ^0 Q' @+ G* E6 f0 ~! I) `/ k/ @% o
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]* C( F0 t6 t# \

    % W5 }' l  ]  P  W/ ]& ]0 h* @9 j! n1, B# P2 `$ D0 J7 u" j+ h+ p8 S/ {$ M/ g
    Abelian Group of order 1& E$ b0 l5 Z4 |' s. E9 A0 k8 K- x
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    3 `7 t& |4 z; a$ L1 w1 |) KAbelian Group of order 10 R- D6 d$ J# `; p6 r
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    8 |+ o* F$ l+ q+ Q6 N1
    / o; ~( {2 ~* U+ ?0 a5 [+ w$ c1; F/ b+ _+ T5 [' F( I) c
    Abelian Group of order 12 X. E9 }& e+ h2 e
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no2 n! |4 B  H2 i. H, u
    inverse]
    , \3 ]' M0 g) V. y& x15 m' ~! U6 K% O! l5 u1 N6 ]
    Abelian Group of order 1
    ! y+ V+ @) C+ ]Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ! E2 ?' b  o2 I, c( f0 k-3 given by a rule [no inverse]
    / f% t+ T3 }7 L7 P- X& O) PAbelian Group of order 1
    ; x' s+ q$ R. E- iMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    0 D' Z+ K& g) r-3 given by a rule [no inverse]
      I$ f' t+ ^7 O3 f+ r, Ffalse
    3 B" ^$ s$ a, t6 p; l$ {* S' Ffalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    - B+ i) s% t% v. r/ `* }$ ]( n/ x* `) H, g7 W) W( ]! m% ^( H- s
    Dirichlet character
    ( y1 G  X: f% j2 p2 VDirichlet class number formula
    - U: j% j, Y$ b8 a' }0 g
    7 [; q$ ?) L; f. q虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根5 W* N; H! I% ^4 u* W( f
    # h" l0 a: u, H* Y" w5 [: w
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    8 h  u2 H" P! B$ _2 {
    ) b* p  b% N; G% |$ q# _-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
      `) O# u) F# m& I7 q& gh=-6/(2*3)*Σ[1*1+(2*(-1)]=1
    $ \/ w7 ~5 l" a5 x! n4 Q' F2 b% n- s) ?$ a  X! W- L  r
    -5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,5 j5 g& s7 T- p+ [6 Q& Y/ a

      ^: P* m5 k- E% g5 F" M" }8 {. e8 }$ |1 ?# M& G

    ' O: g# }  ^; }h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2
    ' c( o0 E6 s& f6 |2 C  z/ k
    : a1 q7 \' x! _- [0 Q; S) y, ~1 g# r9 x: k+ d: t

    4 J/ c+ \- y! i) }3 w6 D-50时  个单位根                          N=200
      x, f) H6 U2 d6 c+ X: f
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 180)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 179)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 - y: w* F* i* U4 Y! ]# l
    " ~2 V, u6 t  Y6 A
    F := QuadraticField(NextPrime(5));' [- ?$ f3 _( R1 Z3 ^, N( w3 w
    + {& h3 K8 O. {# k, N
    KK := QuadraticField(7);KK;0 B/ @8 }7 J# x) Q; x$ Y# |, ~( \
    K:=MaximalOrder(KK);+ {! Z5 c$ S( F) `7 U( S
    Conductor(KK);  _9 ^2 R8 {& H/ o5 }, r
    ClassGroup(KK) ;: `; T4 q$ _8 a6 J0 \/ w
    QuadraticClassGroupTwoPart(KK) ;
    0 F7 F5 d) E0 m) G( F& n. h5 tNormEquation(F, 7);
    ; m/ W& G; b% e0 ^A:=K!7;A;( |  z0 B! j9 P" ]6 u( p% @
    B:=K!14;B;
    % \1 z7 s) E( P1 W. j! A0 V  aDiscriminant(KK)
    7 X$ z- H  k' P, `- S; E8 R
    7 ^: t# e' j; W1 [Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    1 M; ~2 B/ {* V8 ?7 V" T28
      n/ t: }* a5 p+ OAbelian Group of order 1
    8 p" z; H& _2 j  s8 d( X5 T& y9 ^Mapping from: Abelian Group of order 1 to Set of ideals of K( a3 z' V& t7 f7 Q# v/ P4 J
    Abelian Group isomorphic to Z/2- \( z; E% H# H7 V
    Defined on 1 generator
    $ ?! i* B+ F6 U" tRelations:9 G0 l1 o2 Y; Y% U( n' y
        2*$.1 = 0! p! v; l; U. l; X- A" \( s7 Q
    Mapping from: Abelian Group isomorphic to Z/2! Z+ V3 B" C( ]2 n
    Defined on 1 generator$ V$ e( p( l1 O  d% @! @8 e
    Relations:
    / O. b; D7 B+ a: V    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no * p6 C( J; L5 |- Q
    inverse]
    ( J% N: [# }' o+ p) l* w- tfalse0 ~9 @0 Z# C+ R2 Q4 V7 S6 g% h
    7
      |! f" T9 W- `. r14
    : \1 l0 a; h8 U- I. o$ b28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑 & g" v' g0 W6 ]& L7 k! c9 O6 E
    0 Z8 [' g9 d  _9 N+ I# f1 s4 m& Z
    11.JPG
    ! }* i' Z6 [# N* W6 _. S: G* f8 _; a: y! ^' }) Z
    3212.JPG
    # g: k. _( c& d0 W6 e, h
    ( F! y+ u* e# T2 G, i: c 123.JPG
    1 c2 m: B/ p8 @; e# T) U! e6 F' p7 i: T, z
    分圆域:
    % B1 I$ R3 m) Y5 C0 [% ?1 Y3 e( i4 hC:=CyclotomicField(5);C;
    4 |! t- W( c: U6 d" f# pCyclotomicPolynomial(5);5 p3 ^# X: o! D+ q, s
    C:=CyclotomicField(6);C;1 O; }+ O2 R' D, e5 ]
    CyclotomicPolynomial(6);8 v4 _  W, _2 w( p! k
    CC:=CyclotomicField(7);CC;) a1 N/ D/ T9 K" p2 [" h
    CyclotomicPolynomial(7);: @! d3 v- O6 E4 T
    MinimalField(CC!7) ;; f2 g6 @( P  y$ e* \4 N2 t5 y
    MinimalField(CC!8) ;" `/ t, f4 l% T! j5 s
    MinimalField(CC!9) ;0 P' t6 s, O5 y# y6 ]
    MinimalCyclotomicField(CC!7) ;" O( ]; _) u4 L: }. C/ ?8 ~
    RootOfUnity(11);RootOfUnity(111);
    ! v' |. }7 [% S. S' V' ?7 M3 kMinimise(CC!123);" M' l" r# x$ l
    Conductor(CC) ;( [0 i" m. i. [2 I
    CyclotomicOrder(CC) ;
    1 B' O7 f, {- \% |# ?/ r! D& @. i0 j  T
    CyclotomicAutomorphismGroup(CC) ;/ E( P5 y9 }' M3 H: o" f
    & t: f3 l6 R% r. q  A
    Cyclotomic Field of order 5 and degree 4
    ) F5 l; N6 M" m0 x$.1^4 + $.1^3 + $.1^2 + $.1 + 1) D; m6 `" ~( `9 E3 [
    Cyclotomic Field of order 6 and degree 22 {& H" d3 F4 Q; f
    $.1^2 - $.1 + 19 ~% B, {1 t. K. u6 t" v
    Cyclotomic Field of order 7 and degree 6
    ! Y3 }( Y" i: ?) d$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    & M5 A3 u# J) b% H. G8 RRational Field
    0 V2 w2 y: c& Z* fRational Field$ q( k* ^* C  K! W8 {: D4 I
    Rational Field, n4 B) r7 S$ L
    Rational Field9 N3 b- W* Z8 b) ^! w4 }! n2 V
    zeta_11
    # {4 e4 L% N1 f5 r7 Fzeta_111( ^( S/ |% U/ @7 w9 k' T) w! A
    1233 N+ x, y2 M0 X
    7
    ) H' m6 P) c  i8 j7
    * U" p5 P' {1 S: m0 Q7 i- ?Permutation group acting on a set of cardinality 6
    # @6 F' c1 A9 l: M2 W9 ^Order = 6 = 2 * 3
    9 R* m7 J4 O+ r8 r3 L    (1, 2)(3, 5)(4, 6)
    8 L1 F+ ^4 o- p6 _  N7 @    (1, 3, 6, 2, 5, 4)
    3 G) Q& G" y* q; C  a; C; gMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 8 [4 S6 ?) v4 L# e4 |) O0 s: P
    CC' W/ c3 Z* d1 Y
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $,
      {! d7 B6 e* H/ w2 N7 f' y, a+ ~Degree 6, Order 2 * 3 and8 c+ w# z  z) `1 F- d
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ) J; S8 }7 B# O$ lCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 + w5 S0 K  k8 Z1 v5 n+ @# i
    lilianjie 发表于 2012-1-9 20:44
    : ^1 D( }! }% Z4 x5 D% Z* x# M分圆域:
    ! _5 d/ Q4 P, [/ E* JC:=CyclotomicField(5);C;; M& z. B# R! E. q# P$ `! n
    CyclotomicPolynomial(5);
    ( J+ [9 f+ |* b% r
    1 Z+ U1 r8 Q7 \# r' P
    分圆域:& u6 t' a6 f1 e# o
    分圆域:123
    0 b& D7 \5 a7 E8 `5 b- i3 E
    0 j! X, k5 I7 CR.<x> = Q[]0 ]! e/ `; ^5 s$ C# O2 I
    F8 = factor(x^8 - 1)
    9 k- e- v' J- R. u; L- {. _F8# X. ?4 L7 [2 A& \6 P

      J3 k2 ~4 d8 e) W/ _, s(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) * k' n. ]4 `) c) w- Z

    ( w+ R4 P+ t& J+ M$ S% r9 j7 @Q<x> := QuadraticField(8);Q;+ F4 }. U. M; u, g
    C:=CyclotomicField(8);C;
    : o4 S) O( [: L* H+ \2 ]9 I! G: dFF:=CyclotomicPolynomial(8);FF;
    . u/ p; n9 [/ E+ v2 n" |7 U8 ~0 ~: H
    F := QuadraticField(8);
    * }2 l3 C* F% C& o+ H* }2 UF;
    . z" L+ b3 l# A. p5 r* Q& t/ w; LD:=Factorization(FF) ;D;
    6 o9 y3 |2 z& x0 zQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field  {8 P* `" ^, o
    Cyclotomic Field of order 8 and degree 4/ d' o8 G6 o6 t  H, C) N* ^1 |' s. D
    $.1^4 + 1
    0 z& s( J) l! E& c; D1 G6 |Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field( Q& V0 g& m3 @
    [
    5 Y" g9 D9 i" s( k( u4 N/ Z# @    <$.1^4 + 1, 1>. w" c- W; x  m8 v
    ]
    6 p7 K. |3 V! _, M& G. q" m% R$ Q5 z- M6 _% D+ y
    R.<x> = QQ[]/ @% V) v7 A( x% N
    F6 = factor(x^6 - 1)4 e: P/ Z3 U: C3 ~" Q' v
    F6. P8 s% Z! @; v+ y3 o, }$ f1 [( c
    # [( t+ d1 C- q' _4 L
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)   v: C/ [  T, a2 T! Q% k* h

    % W! m/ {9 E+ o) wQ<x> := QuadraticField(6);Q;
    & h; D2 W. o* X( S2 n0 B+ EC:=CyclotomicField(6);C;7 L2 C% E) d' `" `) a
    FF:=CyclotomicPolynomial(6);FF;
    0 ]" b. H: K$ A3 Z7 o! X/ m
    ' |# O' I5 e  {! R2 B) T- }F := QuadraticField(6);
    # x0 G* ?' g( G7 _F;
    & J9 X5 [) e0 a( b: Y% I! GD:=Factorization(FF) ;D;) e! y& M2 x7 b9 h! A' ?0 u
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    8 K8 q% \+ k* B6 gCyclotomic Field of order 6 and degree 2
    ( s* M: M* s- ?, X% V4 W8 l: |7 p4 B$.1^2 - $.1 + 1( G# ^, D$ v& Q; X' |5 {
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    5 y. D5 |9 G8 H0 I2 q[6 i7 W# h( d4 D1 M+ l- o8 [9 [2 v1 }/ N
        <$.1^2 - $.1 + 1, 1>
    ! }4 ^# T' P7 P+ k. K5 V]5 H6 r0 e$ p3 h9 q# t( h! N1 n

    ! s+ K& o4 A0 S6 z: LR.<x> = QQ[]4 }7 W2 Z+ `& |5 j$ J6 g4 I9 X) ^
    F5 = factor(x^10 - 1)
    3 W5 R% t1 i# y8 r8 S) B' {F5' N* X% G) e! C9 M/ M& V/ p
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x ++ l+ t3 S8 S& k4 {
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)( s0 S. [( w, }+ j

    $ M* d& A  y. v  c5 AQ<x> := QuadraticField(10);Q;
    ; F+ k! H' b8 }3 d# FC:=CyclotomicField(10);C;9 |& k/ f  [7 E
    FF:=CyclotomicPolynomial(10);FF;& y5 a$ p$ q  {$ [4 H: A0 j& i

      e# w8 N( A: q9 B( yF := QuadraticField(10);' a8 p* O' G9 s8 U7 [( `8 e2 V
    F;
    % W+ R  E/ k1 Q0 cD:=Factorization(FF) ;D;
    7 h9 [3 G. f) F5 {Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    ( J$ W$ S( n  E' ?+ C' SCyclotomic Field of order 10 and degree 4: N( [9 s+ x. V7 E8 i: o/ K! p3 b
    $.1^4 - $.1^3 + $.1^2 - $.1 + 19 r: K! e/ j3 A$ @/ l7 q, [
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field/ f4 s! n0 `* S3 v1 ~
    [8 b# Z0 |: X" e2 }; n
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>) s5 {$ }  o/ c( B6 v/ ]
    ]

    c.JPG (217.37 KB, 下载次数: 184)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 174)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 14:45 , Processed in 0.568722 second(s), 102 queries .

    回顶部