QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2218|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 % v% x& ^! U9 [0 g% j

    : k8 U0 M% F" K' e9 u7 sQ5:=QuadraticField(-5) ;
      M3 S1 v3 @+ Y2 _1 C5 |8 lQ5;! ]: Z6 m5 u8 T5 V6 Y

    ' X6 q8 t+ U  {" e$ B: ]Q<w> :=PolynomialRing(Q5);Q;. e" p, Q6 _/ ^" e8 I; Z1 ?9 Q
    EquationOrder(Q5);
      x( T+ a7 d+ Q' A9 d7 D" Q2 }M:=MaximalOrder(Q5) ;
    : [" u' M' i! n1 c% dM;
    : A" h5 l3 _; L; r* xNumberField(M);6 }8 P& l2 F3 H) ~7 a
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;" g5 S* g, G0 M% ^; ?. L/ }0 ~
    IsQuadratic(Q5);
    " J: z& O2 |5 F! h% R. QIsQuadratic(S1);
    & j" }/ x8 I& S# I8 ?; T1 x; }# LIsQuadratic(S4);' g/ I( L* R1 T6 G, g
    IsQuadratic(S25);3 Q) ^, f( J. z, V( [$ c
    IsQuadratic(S625888888);/ ^! a1 E7 P% a; P8 P  p0 `8 f- Q
    Factorization(w^2+5);  
    ) X( i7 B9 x2 R: iDiscriminant(Q5) ;
    0 ~1 g, V0 p3 ]# m. _FundamentalUnit(Q5) ;
    ! z% F$ p0 u, [FundamentalUnit(M);0 l7 ^7 A# Z; t: G+ r5 C
    Conductor(Q5) ;
    % k# H5 B! M- m! V8 R; e
    2 e& x& s. h- WName(M, -5);
    ) K0 h3 {  G2 g, x' MConductor(M);6 B4 P* e$ S' C% f
    ClassGroup(Q5) ;   @, w9 l; @( W6 H: `1 }# m
    ClassGroup(M);
    5 B. a/ s! {3 U1 o: jClassNumber(Q5) ;
    & e1 G7 d1 o! K) R  [6 t4 yClassNumber(M) ;
    ' B! H! h/ t5 @, y3 {" WPicardGroup(M) ;, K; t: g2 M& U1 C
    PicardNumber(M) ;
    8 k$ k) r! }  ^+ ~( s/ q) [3 s5 y; w
    QuadraticClassGroupTwoPart(Q5);& B, X3 Q0 Q, q* U6 e
    QuadraticClassGroupTwoPart(M);
    / [+ N5 M) I; ?4 E/ rNormEquation(Q5, -5) ;# ~# A: a0 {, b# F) J
    NormEquation(M, -5) ;
    . Q. p* Z! s6 Q  [9 bQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    8 z. n* y( p& P" D+ bUnivariate Polynomial Ring in w over Q5- M. g# ~+ v8 m; k/ i
    Equation Order of conductor 1 in Q5
    ' e! C- @% Q9 I$ J' e( c9 rMaximal Equation Order of Q5" e8 e3 q% }8 K, i* e/ M
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field" |0 @+ F9 Z  t! @; Y# ^- w
    Order of conductor 625888888 in Q5
    6 V6 r) Q; \6 M6 htrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field( @6 v  Q3 f) p$ T! a( m0 t
    true Maximal Equation Order of Q5& D2 Q$ ?: q( V/ C) f# f
    true Order of conductor 1 in Q5
    ; M1 w1 v1 r- Q; ~true Order of conductor 1 in Q54 ^* a3 D6 Q9 G. [
    true Order of conductor 1 in Q57 J: l7 q+ n0 F+ {2 Z0 G  X
    [
    + u* R# S  H% z' {    <w - Q5.1, 1>,# k$ C9 Z% F  O) I3 j
        <w + Q5.1, 1>
    ; H7 p; Q; _5 F+ D0 A4 q' S]  U& C- Z! q  ^0 W
    -20" N0 c$ {8 d' p# H( m* ^7 ^7 u# d
    ; |/ i% o! v5 u1 L+ v
    >> FundamentalUnit(Q5) ;6 T7 l, U" v7 L$ T
                      ^, \3 @. F% o! H
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ' m) D# h* H+ J) F0 o: e7 u. T4 A, R$ I0 j. J: {. T2 |2 N
    : y7 y4 R$ b* t* ~. P% J* h0 ~7 }- |. u
    >> FundamentalUnit(M);% S7 N, E4 z% Z" c- \
                      ^
    ) ]- K0 _! h9 n' t" W  cRuntime error in 'FundamentalUnit': Field must have positive discriminant
    7 s5 l8 F7 ^0 g7 K7 `. I, I  C8 `6 ~& K4 K9 {2 }
    20! W' h+ x) \, X6 X0 R; _2 T% X
    2 J5 V3 i8 j# s
    >> Name(M, -5);3 I% u8 |8 x- x% ^
           ^
    + a; Q* C, N# E: H+ y' A, e; pRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]
    ( K) o+ Y# ?0 S
    ( f: C) O! x3 `% U# g1
    : [, {9 P0 u0 M8 Q. p4 ?- A9 m% \Abelian Group isomorphic to Z/2
    ) q) @: U) o* M8 O5 @& e+ ZDefined on 1 generator- X4 H+ c: s9 W4 H4 r
    Relations:
    9 G8 y7 f. N0 W/ Y, R    2*$.1 = 0( L4 U' s& `' h' K, d
    Mapping from: Abelian Group isomorphic to Z/2; {1 J7 x# u0 K# a! m+ W
    Defined on 1 generator
    $ ?  R$ t+ q- P1 X) I0 aRelations:
    8 C1 N4 N/ l  j* `    2*$.1 = 0 to Set of ideals of M+ I1 Z+ H9 S& A2 `' i# D
    Abelian Group isomorphic to Z/2
    # _6 l4 ~+ A4 C' Q6 nDefined on 1 generator2 z; `, t" S/ H
    Relations:% f/ g6 q+ W* t, I. i: I
        2*$.1 = 0: s/ \% _! q: X) [% y
    Mapping from: Abelian Group isomorphic to Z/21 P0 Y$ Z$ Z9 c( I* c' B
    Defined on 1 generator+ |! R3 L3 C; G* q
    Relations:
    & R5 i* C* ?) O+ j/ L7 k    2*$.1 = 0 to Set of ideals of M
    2 H+ D2 Y8 f0 j* i2 ]+ r7 [2
    # y" N( Y5 K' i0 r2 ?; }& }9 _$ ^0 [2$ t9 [" Q# x2 O* V0 Y4 P
    Abelian Group isomorphic to Z/2% `7 k6 _( \* n" ]/ m& z* L  Y
    Defined on 1 generator! n- n# T7 W* |% `7 {9 P
    Relations:
    / S! Y1 j5 B) P7 \2 p* Z  X    2*$.1 = 0
    0 S4 V0 t* g; v5 k- n2 gMapping from: Abelian Group isomorphic to Z/2
    , w, D% I* R0 F( ~" i, hDefined on 1 generator$ e8 Z* X! M2 c9 I- }; z/ o! y
    Relations:
    2 ^, l) j# D" y    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    , Q3 `3 w! {+ u2
    * P4 M4 i! q9 L+ p$ BAbelian Group isomorphic to Z/2' a6 m4 b/ |# ]
    Defined on 1 generator
    " R9 x6 x3 I6 P. @8 c3 G$ c1 VRelations:7 H9 d4 O5 `" F8 X0 M
        2*$.1 = 0/ V7 P$ W2 y+ }+ W" V7 b
    Mapping from: Abelian Group isomorphic to Z/2+ G5 ~& K# i. ^5 w6 x: h0 C* a* G& x, E
    Defined on 1 generator
    ' z  F) M4 m/ c3 bRelations:( ^. D9 [5 D1 i/ n9 e, h4 Y$ c) a7 p
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    . s! l4 I. j" d8 c4 f1 Z( w9 Iinverse]
    3 Q/ U7 @" F' p) g$ EAbelian Group isomorphic to Z/2
    6 H9 [4 M- Y/ Y, RDefined on 1 generator
    & W% n0 v$ Z' K& }Relations:, \& B2 R4 Y5 F7 ~3 h1 g& G6 O5 K
        2*$.1 = 0  `9 u# h! k. a0 z9 T
    Mapping from: Abelian Group isomorphic to Z/2
    : }$ k. e8 a$ `8 eDefined on 1 generator- o& v# j1 B( S/ r% `3 E& R
    Relations:, v* h* y# l9 [6 `5 b
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    - N* t6 n6 }& p/ xinverse]
      d  z- X) a4 u  rfalse
    0 z  p7 o" @" l7 [* Z; W9 f# {false/ @- A& K) K2 E! I+ o; A0 J: n  k
    ==============+ ]" ?; k8 f; N4 f$ d; @" q2 G
    & X+ D1 T; W+ W
    " n5 M( m/ j4 m! `' f& l
    Q5:=QuadraticField(-50) ;; V  \# ?: H1 N  H
    Q5;7 \0 p+ M1 j  @3 U
    : y4 ], a. P# M* o0 F( i
    Q<w> :=PolynomialRing(Q5);Q;
    ) ~8 s' C+ D& J6 eEquationOrder(Q5);
    . c+ b2 y$ e: s5 Q. x6 f  aM:=MaximalOrder(Q5) ;. [6 b7 r* o- ~0 E
    M;( s  F- U9 w6 [) Y9 l; h
    NumberField(M);
    2 n9 X  Z7 l/ N, c0 lS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    " I7 ~( `/ E8 z1 Z3 ]1 s$ eIsQuadratic(Q5);
    " ^. Z. q0 I$ ?6 m' dIsQuadratic(S1);! S& ?6 f- g7 U; c$ f
    IsQuadratic(S4);
    % y" H& Q- s9 ]' c0 AIsQuadratic(S25);, S- X% x. I- t0 s% h. P
    IsQuadratic(S625888888);$ a% A; A- Q) t
    Factorization(w^2+50);  . ?$ o$ v2 @9 m: ^# i3 B" M( m/ z' u9 r
    Discriminant(Q5) ;' R2 q# @/ P- s/ L5 _
    FundamentalUnit(Q5) ;: j5 _7 ^$ ]! |. |9 [6 z! f3 }! m
    FundamentalUnit(M);- T9 V1 v2 n- n! H& D; L) E
    Conductor(Q5) ;& X6 v3 U- C; Q7 P! L0 Q. }6 k  w$ J

      _* M, M/ l/ s1 }% O( gName(M, -50);  g' W# L( ?* _$ j( u
    Conductor(M);
    2 y) l' {9 O. g5 \( }9 ~ClassGroup(Q5) ; : H. F2 z& p6 D) z2 d
    ClassGroup(M);# w& b7 A! o* z/ L/ Z; Z; Y9 l) Q  F
    ClassNumber(Q5) ;) z# E% d0 ~9 u" O, @8 T4 B. O
    ClassNumber(M) ;4 f% j( W/ C) g8 {
    PicardGroup(M) ;2 i. i- s; {' X+ }
    PicardNumber(M) ;
    1 ]. Z1 ], ^9 d3 M2 N4 X0 `3 [$ c! l- V$ Z# C1 e8 t
    QuadraticClassGroupTwoPart(Q5);# p: n+ G' k# H% W9 J' m  `6 W/ U+ F8 }
    QuadraticClassGroupTwoPart(M);8 U) j% Q. Y, Q5 v% M
    NormEquation(Q5, -50) ;
    6 p+ h; b+ W+ VNormEquation(M, -50) ;
    0 A1 G* e) }# d2 e* D
    : y0 s# C! ^5 C4 |; wQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    ) }! A) E2 ]. y' h# }& U$ sUnivariate Polynomial Ring in w over Q5
    " s9 R+ i* B7 K3 |6 ]$ d5 oEquation Order of conductor 1 in Q5
    4 l3 T6 i; V# mMaximal Equation Order of Q5$ U1 u; u1 p' D& a1 w
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    6 Y+ F: T4 W" Y4 {! SOrder of conductor 625888888 in Q5/ b3 T6 @6 H  k* {) e0 C, @
    true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    ' W' W2 J0 A: W/ {/ Qtrue Maximal Equation Order of Q5
    / T: Z8 n- ~, }& v- U% l: |% O1 gtrue Order of conductor 1 in Q5' @8 s- V  q8 d6 f7 o
    true Order of conductor 1 in Q5
    4 f' m' d) I' j4 n& Ytrue Order of conductor 1 in Q5
    3 {1 J% E+ y- F$ k[6 B1 d; B# G" J( U
        <w - 5*Q5.1, 1>,2 y  ~! ~6 n. p8 U, ^# {; S9 i
        <w + 5*Q5.1, 1>  L& [4 p% |9 `! e" W  B/ t' B
    ]+ y* t6 D0 O9 a  i: h' R2 j# ~
    -8# Y# r) |5 n5 `

    / R6 k% e9 c! y5 p+ V>> FundamentalUnit(Q5) ;7 _- L: V: ]* y% e" r
                      ^+ i8 s! y  \  S
    Runtime error in 'FundamentalUnit': Field must have positive discriminant. }" p- n- n; }0 P3 W

    0 y7 k  E1 j5 s& j# G+ W4 y& c
    # b/ ]# j2 m) k* @>> FundamentalUnit(M);
    0 H; C+ `2 ~5 F' e0 q2 ^                  ^9 n8 b: T' {. p) R& c- p# ]: ]
    Runtime error in 'FundamentalUnit': Field must have positive discriminant; h7 Y( N8 P+ t2 c$ H, g# J7 q
    $ q% z, t& @* ?5 n7 R6 H- ^
    8
    5 ~! j7 o" F0 {! n( W! ]7 B; j6 O# D* U! s
    >> Name(M, -50);# G1 c! u' K, l  Q
           ^
    $ Z# Y9 D5 W' j6 M- c, `Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]( R* C' h) {) S) c, B

    . C" j) ]5 K: T# {! a1
    ; b; U' f/ p7 G6 N& n" a; g4 DAbelian Group of order 1
    , S; J0 X; G" k0 C% k3 k% Q0 o* dMapping from: Abelian Group of order 1 to Set of ideals of M) T% o* v4 E/ L2 |
    Abelian Group of order 1* \' N6 |) m# |% h- \
    Mapping from: Abelian Group of order 1 to Set of ideals of M6 N0 e" E( ?0 t4 D8 m
    1" x* u1 y: M' Y& _, \
    18 g) l7 @- _0 W1 B1 c, ^2 m
    Abelian Group of order 1. L' b5 t2 |* f
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    " l" n3 Y6 _5 H' tinverse]
    ; Q7 [4 N( M, @1: [5 @* j4 I: O' D7 B
    Abelian Group of order 1
    ! v  a4 T) Z1 sMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    , ^) T) f- l7 Y2 c-8 given by a rule [no inverse]- o: w4 D5 _, E" H
    Abelian Group of order 18 a2 Z" [# H4 Q9 n+ W$ X
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    * h6 ^* w/ n" u4 ?-8 given by a rule [no inverse]3 ?, k& ?) w( u" S4 ^) R+ z. d+ h
    false
    ) S" i( Q7 H/ t6 t, Hfalse- U% T( j! o9 r; g( x3 \; L8 j, x- h
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    4 S* H5 e* F& E+ y! m
    ! Q' Z, W4 m1 l$ uQ5:=QuadraticField(-1) ;
    ' p/ N% d. _* _# q" N6 NQ5;- Z. g5 {/ A9 \2 j
    % \" F* C* L! M; s+ c: S0 X
    Q<w> :=PolynomialRing(Q5);Q;
    ' C% D6 d  ]9 E9 uEquationOrder(Q5);- P1 x/ e0 x* R* a
    M:=MaximalOrder(Q5) ;
    $ ~. x6 _1 y( R8 yM;9 o& v& |1 g0 X9 e" S
    NumberField(M);% u3 k8 U& C9 k' D8 Q: t( O9 c
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;; v& M0 G) I7 N% |
    IsQuadratic(Q5);
    8 C) c) h/ g" w# L3 E' E( kIsQuadratic(S1);% G5 {8 C) g9 m+ ?
    IsQuadratic(S4);
    $ G5 i: ?7 F! O& dIsQuadratic(S25);
    ; g- G( I8 c* S* z9 \; hIsQuadratic(S625888888);5 @; ^1 \( M2 W+ N
    Factorization(w^2+1);  : y2 q8 c& A7 z+ M4 M
    Discriminant(Q5) ;3 ]- z( O4 r# J
    FundamentalUnit(Q5) ;8 Z/ s$ U  _/ Z
    FundamentalUnit(M);; k. z- e& W" M0 x! n8 A! e) O- r
    Conductor(Q5) ;4 C6 P( Z! D! H9 C; U  J

    4 C3 ?' ~# [, n1 nName(M, -1);
    , F" ~# W4 C2 u% r9 ?) R! oConductor(M);
    . U8 Z( y( W( A- f6 `ClassGroup(Q5) ; # b' f- N2 ~' r0 V4 O
    ClassGroup(M);  j- W2 F0 A# j; J, V% o2 q
    ClassNumber(Q5) ;
    - S6 r1 Y5 o  b9 NClassNumber(M) ;6 S4 E; }3 I8 y$ m# t
    PicardGroup(M) ;0 T( I( y! h7 ~4 d' @+ R
    PicardNumber(M) ;6 p# u# A$ w2 S2 i
    : C8 n1 ^, o6 ]6 K* i4 ]  V7 B! s5 d
    QuadraticClassGroupTwoPart(Q5);. S6 ?5 g! }, g+ v
    QuadraticClassGroupTwoPart(M);; R* [' l5 n: [1 U1 U1 D9 I  a
    NormEquation(Q5, -1) ;- V! R+ S" W# U* ~8 v" v$ t- @
    NormEquation(M, -1) ;; j" R: I' f5 K+ g1 r5 `# F" x2 f

    ! U5 Y3 H! Y$ @! h- SQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    0 b' c% b) i/ ?3 @# p* r6 X; KUnivariate Polynomial Ring in w over Q5; u4 X/ B% j3 n' U2 M  s0 {2 I
    Equation Order of conductor 1 in Q5
    4 K$ ?8 g/ [7 t4 d/ m! e% \Maximal Equation Order of Q54 b% d( \6 j3 \0 B& d
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    ) s. b% M$ c7 G4 y5 ~Order of conductor 625888888 in Q5
    * v& N5 I  z6 b9 R5 V& \( p9 rtrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    ! ~& n1 H) E8 h" h& `/ r4 vtrue Maximal Equation Order of Q5  a6 I6 x! V1 E& \9 G: b
    true Order of conductor 1 in Q5
    # s9 H+ \/ g, ?0 k3 F' e5 ^2 i6 D/ ftrue Order of conductor 1 in Q5* {! |, J2 U( g* n
    true Order of conductor 1 in Q5
    ; }" x% w" a& ~9 b. o- o) P0 E[
    7 i  {' h" O. ^8 r; J: U    <w - Q5.1, 1>,
    1 L! d' y0 U* }* J3 L    <w + Q5.1, 1>
    & X7 }# V, D, ]1 C" G2 V]
    4 v, m  ?7 j  _+ s& M- ?0 J-41 m8 u. }1 M; ]+ e$ b  Q

    # ?$ Y: r' f! U5 {) d9 i>> FundamentalUnit(Q5) ;
    ' V* |" j# Q8 U4 ]8 f2 O7 L                  ^8 r5 F. O0 C8 D% ^( @6 s/ r( R
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    5 o+ p' i7 p( B5 h& I1 ~
    $ q1 C! c( ]8 p) M* n% {- Y% W# h7 G7 c# ]/ _# I2 E$ H
    >> FundamentalUnit(M);1 }8 K& u1 T0 u* q1 q; ?- h' h* X
                      ^
    # k/ D& ^; ^" U. d5 W' ~Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ( Z9 p( \4 k6 N# }5 M  Z, \
    + X; E! t& K. K+ V2 W# d' h4% ~6 |2 D! N: }' |' Z2 f: R
    6 p  K$ G5 }3 |. b
    >> Name(M, -1);
    7 Y3 D& s; |6 X       ^
    4 M& T0 |  g% j* I1 d& ?1 MRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
    & }% Z" N. G, j& }9 g) L1 A! O' X5 r: T& [* g( g3 m9 J
    12 N, W/ E2 D& f! K) w1 ?4 y9 P
    Abelian Group of order 1
    % x% X9 e- j( ^1 |! qMapping from: Abelian Group of order 1 to Set of ideals of M3 y6 }7 k0 A9 U4 {+ S) C
    Abelian Group of order 1/ d5 D: a  R4 n
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ) b3 T9 f5 G' s) v1 z2 s  [1 v1  f! K9 Y# S7 B5 g+ i. I% C
    1) O* f5 s$ \0 A2 ]2 ^
    Abelian Group of order 1" k" l" @# w# e6 i
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no9 e6 p( K7 P$ j( u" n6 F
    inverse]
    ! L- q" v1 _2 E1 z17 e# _8 g7 h) M2 R( }2 {( |
    Abelian Group of order 1
    9 D  i6 |/ x( r: _1 M" t" I% UMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant+ N6 I! \7 p' t( B
    -4 given by a rule [no inverse]
    & w8 T6 F2 \+ ?Abelian Group of order 15 a6 [0 U- X) @
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant! P. n2 K3 R$ l* C
    -4 given by a rule [no inverse]
    2 Z! h* M0 n$ C0 P" D$ I% afalse/ @) d& b" w# q. i4 r5 Q7 e
    false* ~# a; I. q9 o4 m1 K
    ===============
    $ h; Z$ E4 p) x4 j" C# R" ^/ X
    ) O5 d! u5 X" l9 `7 k  F, _$ qQ5:=QuadraticField(-3) ;+ G8 N7 U& I+ z5 P8 j1 U$ u
    Q5;, U% L. P+ c: j  m8 z2 K

    / e* Q) f7 ?8 B/ v  @/ uQ<w> :=PolynomialRing(Q5);Q;
      s6 [; E; d" s$ t3 d# \EquationOrder(Q5);
    & H8 F/ g+ f! l, RM:=MaximalOrder(Q5) ;
    9 r3 v3 f& q% @5 |M;6 U4 h  I5 T0 @7 a0 Y- w
    NumberField(M);
    % y8 K9 L) n2 ~4 j8 l& US1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    ) A/ `8 T5 }: }. `" J! e" QIsQuadratic(Q5);# I; X0 J" f* h3 d7 I' S4 r& U
    IsQuadratic(S1);
    4 o+ l" ]0 x, `) ?& p9 o& m% t5 e" DIsQuadratic(S4);
    / j& e; |! W& @7 h  i: iIsQuadratic(S25);3 k- [* T6 N% v* q, m
    IsQuadratic(S625888888);
    # s/ v6 q- v& q5 Q: tFactorization(w^2+3);  
    - |( w8 }0 ]6 U# c4 }Discriminant(Q5) ;! r# J% D& v9 h' K7 t9 ^
    FundamentalUnit(Q5) ;
    4 F4 L* ?/ V1 M6 }* }) ^: s" RFundamentalUnit(M);+ y/ C5 N- H9 I/ D! h8 y, \* i$ I
    Conductor(Q5) ;; H* K  s) ^6 j; j' R
    # `3 t! D; n2 Q
    Name(M, -3);
    9 S+ P4 q- H9 t- }Conductor(M);( j- i' q4 r4 X5 e1 e8 a: T1 C3 [
    ClassGroup(Q5) ;
      n9 ~1 D" G2 ~ClassGroup(M);
    : h7 m4 u9 X1 W; lClassNumber(Q5) ;
    1 ~& d7 B/ N/ m9 g; {& V% S% E% HClassNumber(M) ;1 a. h8 u' E, y& I4 p
    PicardGroup(M) ;
    ! Q, B  x' F$ JPicardNumber(M) ;
    ' n5 M  c+ A+ x, }9 j+ A# H7 F, B; f; D* i: o6 V. W/ K
    QuadraticClassGroupTwoPart(Q5);' \5 a! l$ o1 g! l0 k
    QuadraticClassGroupTwoPart(M);
    / O9 d7 c' K5 F) xNormEquation(Q5, -3) ;% {* E; S% g" z! p$ l
    NormEquation(M, -3) ;
    ' K$ B4 F4 c, w- ~8 i
    : P  V5 D" |  H) ?2 i; C; [Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    + |+ O" u9 @6 d4 kUnivariate Polynomial Ring in w over Q5
    % Y, B) u6 i* PEquation Order of conductor 2 in Q5
    . `! Q" N+ Y7 v' BMaximal Order of Q5
    ) ~# @' N. l) b6 CQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field6 s( K; V8 p0 }
    Order of conductor 625888888 in Q5
    : j2 ]. b8 z- T; R- M3 u1 h6 v0 P7 Y) _  ]true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field9 r( G+ U: G9 h4 L8 q3 [$ m
    true Maximal Order of Q5
    ; l% L1 k, y# Ctrue Order of conductor 16 in Q5
    . ^$ ^6 p, v' Atrue Order of conductor 625 in Q5
    ; n7 Z7 G2 J1 ^true Order of conductor 391736900121876544 in Q5
    : p8 P2 P- z# S; w7 h* v7 \3 }[( O6 {/ p$ L, f5 J8 V# ?3 a
        <w - Q5.1, 1>,0 u8 V' j6 x% W# _( m! F
        <w + Q5.1, 1>
    * N/ k* Y* x2 G4 s6 C]$ L; l! z) M9 N- W7 N0 m) `! |
    -3+ m1 h: ^( k$ @$ g
    ) n( E" ?* K- n( d3 z3 u
    >> FundamentalUnit(Q5) ;
    3 h) s& x, k) p                  ^3 w$ b& T% P- N
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    + |) e! G; k# Q+ A) C- d, S# _& B' ]

    . N% s! u9 y6 E( r! R' u' j>> FundamentalUnit(M);5 C9 l1 T# h- _4 a: {5 ^
                      ^$ d/ v$ k9 m; U: {! p
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" h  G  U) Q/ P/ I/ {. I# [, K
    6 |% u* S8 @" L: `
    3$ d4 ~7 {. s' {8 C2 a! }9 d

    - |+ `0 p- l8 K. A# z$ @3 e>> Name(M, -3);
    5 v+ N7 ^4 N$ f% p8 \       ^
    & _4 k$ M4 }9 H' s. HRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    8 V6 T4 I7 U  u7 b' s
    * _8 q# q, h" ^- `; T' E1
    2 f( k) b, C( K+ G$ J+ HAbelian Group of order 1
    & c# K/ u, ]6 d; n& }Mapping from: Abelian Group of order 1 to Set of ideals of M$ A, g& E. c$ m. H$ d9 F
    Abelian Group of order 1
    : I. P5 t  p  eMapping from: Abelian Group of order 1 to Set of ideals of M0 C: e1 o* X! V/ W, V
    1; L5 r8 B" Y/ V7 q" X$ n0 X  h
    1; m: E* T  B! v6 {; H% ]# Q6 I1 Y
    Abelian Group of order 1
    1 O8 c) r( ?  U  `7 w5 V/ K& AMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no) j! T: f- f  O" [' o/ N, j" m4 |
    inverse]4 {  q* }! ]8 ?- j" I$ A
    1
    ( {) H3 J, }- Z+ `) l7 kAbelian Group of order 1
    ! `% o) g# ?5 J, e9 E5 t. ^Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant) E( E0 Z4 C2 x. J, N) I/ a' L) C
    -3 given by a rule [no inverse]
    ' o: N2 Z$ N1 FAbelian Group of order 1& o; F# P1 V  C8 ]
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant. O7 H. a& m4 G, _& }2 [+ P
    -3 given by a rule [no inverse]
    : P; S* M, I, gfalse
    - y+ p1 R  B' S+ K3 x+ Ufalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑 6 c# s; E, |6 k$ a' a5 L
    0 V: a7 i9 I# S8 m
    Dirichlet character; z$ ^( u0 @; [8 b! S
    Dirichlet class number formula& Z; x1 q% b, S  Y/ ~1 P) x# c

    - g; X6 X; T* g; z) @2 n0 {9 T虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根0 A  y. s* g. Q; ?% A

    ! V1 I. Z7 @# S5 h-1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1$ Y  [% s6 B8 X2 |8 E1 c8 Q

    9 n, [( \6 U) x) ?" F) ~4 C) n/ q$ v-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
      U' \% \- q- q* |# C1 ^h=-6/(2*3)*Σ[1*1+(2*(-1)]=1
    5 ]" k) ^( H- G! ^, W% Z6 n% V
    % e- X4 S" w( g. ?-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,
    / p7 L, a2 K, T' z0 S0 O& v
    % c0 _% _" @, [: g( L7 m0 M6 m9 Z3 h* c" T; |0 k
    : `4 ~" I9 ?5 Q- u  _$ x$ K
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2
    2 r" y. ^" T  d0 ]9 u5 S- z
    0 U. Q, _- q5 r4 A7 K( k* f4 z6 f7 P- k: D
    7 g1 i9 c# x' a6 l
    -50时  个单位根                          N=200
    4 j: |8 h; E5 s3 f% s8 w
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 180)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 179)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 ) \6 T. F( ?! A9 c2 w

      c5 {2 `8 n" `  ^% y7 XF := QuadraticField(NextPrime(5));2 c/ m  m6 J* F& R
    7 P- X) t& F  ?
    KK := QuadraticField(7);KK;4 f. B8 \5 s  H2 j$ e$ U
    K:=MaximalOrder(KK);) P+ p9 k% g8 S* h
    Conductor(KK);( K/ }+ I# M! h; w
    ClassGroup(KK) ;) n) @! i* m0 A
    QuadraticClassGroupTwoPart(KK) ;4 Z% B" P" G6 N6 ?, N, ~# @, t
    NormEquation(F, 7);
    ( ?" D% r/ e6 [A:=K!7;A;
    : T9 f' D5 a; L; NB:=K!14;B;) N# @  g8 `  f1 k
    Discriminant(KK)& s" U+ a- X6 J+ [' u+ P) q  `

    , t5 O, @- D. i$ rQuadratic Field with defining polynomial $.1^2 - 7 over the Rational Field$ V1 h6 _0 U1 V- B, w
    28. E- Y6 u; v. F3 t
    Abelian Group of order 1
    ( ^5 C/ s( e5 H  E, i  n/ p1 Y# }' FMapping from: Abelian Group of order 1 to Set of ideals of K
    $ S9 ~2 W7 `+ H0 A* KAbelian Group isomorphic to Z/2' Z. e$ A) X- \" N4 }$ \
    Defined on 1 generator
    ) I1 J; ^7 _0 B9 {Relations:
    * M* N- w2 G; b" f9 m    2*$.1 = 05 Q9 \/ o" g# E1 ?9 x: t# ^
    Mapping from: Abelian Group isomorphic to Z/2& W) f8 X" v" ^1 @8 f9 |
    Defined on 1 generator9 Y8 U) T$ ], M$ N6 q
    Relations:5 {. f7 y6 b/ O
        2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    ( v! K' T; w7 m" S+ u0 hinverse]7 u; Z$ w/ N5 o4 D8 C5 f
    false' r& b/ @$ B- v4 q6 O
    7. }+ S5 J3 X! L; T
    14
    # u; B8 o7 x# N9 R. P! k28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑 " P/ f: n1 t0 c1 c" c2 s$ Y

    & P5 D# d% S# n) Q+ |, w 11.JPG
    & V0 g8 W' R! r. W  A2 O: ~2 ~* D( }) U" e
    3212.JPG ; ?7 h' Y2 K1 J8 v6 P

    : c8 v9 k! _, x, B, |9 F# w 123.JPG
    2 W* Z0 t6 s4 k9 t* \4 H$ [: V
    7 z0 g  I. ?+ X' o) ?$ `分圆域:
    + x" a9 @' n) k* X3 ^C:=CyclotomicField(5);C;
    9 M4 ?. C2 X4 {) Z  {CyclotomicPolynomial(5);
    & l' X4 d7 c0 f, N& [C:=CyclotomicField(6);C;
    3 k* G3 M* R( S) d3 e& jCyclotomicPolynomial(6);- d8 E& A2 [& \* _" `
    CC:=CyclotomicField(7);CC;
      K6 \' }0 v" W+ dCyclotomicPolynomial(7);' s+ t1 g  B# ^1 N" R2 O* i
    MinimalField(CC!7) ;7 m" E: L. C9 ]3 a
    MinimalField(CC!8) ;. U1 |& o: K# J8 s  r: d
    MinimalField(CC!9) ;
    9 [) Q' G% T: T/ k3 p" TMinimalCyclotomicField(CC!7) ;
    ' R* K- y9 F: \; O' d! L% YRootOfUnity(11);RootOfUnity(111);
    # E, Q, x& P. cMinimise(CC!123);% P& w+ }( A# f9 V! l$ k  N
    Conductor(CC) ;5 S$ F. |( v0 I
    CyclotomicOrder(CC) ;
    + s0 t- p  W9 f1 O* v& e1 S  e
    ' h2 ^" D2 S$ V4 U6 N& t6 z, gCyclotomicAutomorphismGroup(CC) ;
    8 w) ]* y! P& m- J* n4 C; X4 a" H( p9 [1 y3 O+ z
    Cyclotomic Field of order 5 and degree 4* a6 E9 M. m: _" O) l
    $.1^4 + $.1^3 + $.1^2 + $.1 + 1- i. C( x2 }% T8 {
    Cyclotomic Field of order 6 and degree 2' s9 F: X6 J6 \" A/ J
    $.1^2 - $.1 + 1) ?' Y: b3 {+ z9 l+ t* y1 w
    Cyclotomic Field of order 7 and degree 6
    ' \/ i' a1 M& y$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1# Z& c, ]' a2 s5 c
    Rational Field
    & a+ w* [4 `4 m  ^5 J# ]Rational Field
    + v* f- Q, h$ w" C" f* cRational Field
    + E5 [% t1 b1 I% |  A! eRational Field) v4 T0 E& K8 e# {/ ]$ e" h/ t
    zeta_11& m6 o, A3 f( Y$ T4 d
    zeta_111
    % R/ b. n! i1 Z! D+ S1 R- I0 |1231 x6 A  D9 Q6 |3 {
    7
    1 O) [( n, M6 `; U- O77 i, q5 V) a3 D( }
    Permutation group acting on a set of cardinality 66 t* g1 U3 T# y' W/ N% `' `
    Order = 6 = 2 * 3+ [1 R3 ^9 \- `! @/ i% C4 W" D
        (1, 2)(3, 5)(4, 6)
    4 [4 y3 |) x& y/ k5 j: {    (1, 3, 6, 2, 5, 4)
    5 W9 g) @. n& zMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of 3 {! R' r' u1 `7 o1 W
    CC& p  @; E, Z5 e, u9 o4 j1 c
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 0 E- K' T% `- U! g
    Degree 6, Order 2 * 3 and
      s3 ]- b3 D4 I/ k/ S! r: aMapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ! _+ t& ?; [) N+ x1 bCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 - \; X! _+ t# j) @& |) Z
    lilianjie 发表于 2012-1-9 20:44
    ' Z) |& \) c# M. b: I- _分圆域:
    ( L& j$ ?2 {, KC:=CyclotomicField(5);C;( {4 F, {6 ?$ u' @6 i* R
    CyclotomicPolynomial(5);

    . s  R6 t$ L$ h) @
    # O8 R9 j5 t: J2 q分圆域:% ^5 r  @% N% u% C9 D% N# o" f5 }
    分圆域:1231 d. v2 L6 B, ]; `- G
    # G. j# |' L3 t$ l9 e
    R.<x> = Q[]8 C7 y, G# ]% I' j' P
    F8 = factor(x^8 - 1)
    ' F& ]4 p' @' {3 u+ z& S3 FF8
    0 H7 K6 J$ l" ?: F' ?+ e# a4 [# G/ X2 X6 b6 ?* H, K# c- O
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1) 4 M7 B; w5 p. @

      N! O/ v) f* c. v9 IQ<x> := QuadraticField(8);Q;+ b* Z. D8 }$ y# f6 n; P: r
    C:=CyclotomicField(8);C;9 D$ I  s9 H9 K5 p' w- P- a
    FF:=CyclotomicPolynomial(8);FF;" @, ~  a: `- O* T
    & {9 c' D( Q" I0 J5 n% `  x" C
    F := QuadraticField(8);
    7 Q) [; v" c) q1 W: bF;% k4 M% S# X- T- G' D9 C0 K; ]
    D:=Factorization(FF) ;D;0 }. E- Y1 h7 k2 X
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field2 @$ z9 q  i# L7 \0 X8 u6 [9 C
    Cyclotomic Field of order 8 and degree 4
    * f0 h' U7 O2 d6 o; i$.1^4 + 19 x" a9 A0 m% y9 f/ o8 @3 [6 ?6 m
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    - b5 V) L3 c$ ^[3 I- ?; I! Q  z$ c2 h4 a* Z' e
        <$.1^4 + 1, 1>
      _3 L# l' u* {( \- z) i]
    $ Z: n: n3 \  M% f2 y: }7 R6 H% S  E
    R.<x> = QQ[]
    3 A: l/ {1 s8 b& m0 n0 TF6 = factor(x^6 - 1)
    ! ^1 H. x  D) _% a: X2 w# XF6# y4 i8 i6 H' ]

    4 q. ^& A1 E% C$ ]& ?8 k(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    ( W+ Q" [- ?) u3 F3 X' c1 u5 a  w5 g! M2 F  v
    Q<x> := QuadraticField(6);Q;4 b& }9 j6 [# _: x7 G1 K1 o; ^& a
    C:=CyclotomicField(6);C;+ F" a* v1 \- j) J9 @
    FF:=CyclotomicPolynomial(6);FF;- S2 @8 E; A( V8 t! G

    % z  ]; J3 ~4 ]% E2 e1 Y4 b2 rF := QuadraticField(6);
    % W2 q( O1 l5 |4 h3 PF;
    6 J# N) C6 N! U% @" z$ \D:=Factorization(FF) ;D;
    2 Z% g9 a" e  S9 ?' Z! m: m- NQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field3 S& G2 t' p8 @& D* @* L+ i
    Cyclotomic Field of order 6 and degree 2  w' u( R' h6 ^0 s( F3 L
    $.1^2 - $.1 + 1
    3 d- Y* c6 O6 ^7 e2 VQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    * o( }0 q2 ]3 S+ I[
    9 g6 J! y" n* G( |* r    <$.1^2 - $.1 + 1, 1>
    4 J& p" q4 k/ r6 J. i8 W]
    / c/ [" I/ ^$ ^0 e0 K, l" X" A6 e: u+ E* e0 ^( Q* Y
    R.<x> = QQ[]
    3 O, F+ N8 t9 ?5 s- X, O4 R8 V$ bF5 = factor(x^10 - 1)
    , b. `" D! b3 s. u, u# W0 |F5
    9 ?2 G( m2 K7 p) m- ^(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +9 ]$ C5 U5 S% r  C+ H2 H% U" n
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)1 @, F2 v' w" [+ d. Y( W& o' l5 `* r* |- j
      L; M- g3 j* }6 X$ D' G/ G
    Q<x> := QuadraticField(10);Q;0 [( A: A  P5 Y$ f/ m3 h0 J; o
    C:=CyclotomicField(10);C;
    " _+ N- ?1 C4 b5 I" {+ xFF:=CyclotomicPolynomial(10);FF;
    - c  B' q2 _, W  d* H, t: Q3 V& |* |( X4 ?) l
    F := QuadraticField(10);2 _, g) q, S7 |6 ^4 ^
    F;
    . X) Z3 q, ?" U5 o0 v6 t: TD:=Factorization(FF) ;D;
    ! g: r1 r% z% Q3 o) dQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    4 B- [5 N+ }# {3 R7 Q6 ]9 z: KCyclotomic Field of order 10 and degree 4
    / Z" }$ I* u1 p. ~) l, ?$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    " M# I6 I. X# z; ^& {Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field+ E3 n. i, t! ^! f. E
    [0 g; B: t2 q' U2 Y8 i; o/ b! `
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
    - w) r( ~5 N% A" Q5 q: J1 w5 O, |) V]

    c.JPG (217.37 KB, 下载次数: 184)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 174)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 14:46 , Processed in 0.869469 second(s), 102 queries .

    回顶部